Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection
Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE
Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection
Multi-mode fiber (MMF) links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks. Recently, mode division multiplexing (MDM) over MMF has been proposed, in which different modes in MMF are utilized as spatial channels for data transmission. Strongly-coupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output (MIMO) digital signal processing (DSP) are complex and expensive for short-reach transmission. So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed. In this way, the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection (IM-DD). In this paper, we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF, including mode characteristic in MMF and weakly-coupled mode multiplexer/demultiplexer (MUX/DEMUX). We also present the up-to-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF. We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.
multi-mode fiber (MMF) / mode division multiplexing (MDM) / weak mode coupling / intensity modulation and direct detection (IM-DD)
[1] |
Olshansky R. Mode coupling effects in graded-index optical fibers. Applied Optics, 1975, 14(4): 935–945
CrossRef
Pubmed
Google scholar
|
[2] |
IEEE 802.3 Standard for Ethernet, section 4, http://standards.ieee.org/about/get/802/802.3.html
|
[3] |
Freund R E, Bunge C A, Ledentsov N N, Molin D, Caspar Ch. High-speed transmission in multimode fibers. Journal of Lightwave Technology, 2010, 28(4): 569–586
CrossRef
Google scholar
|
[4] |
Sun Y, Hallemeier P, Ereifej H, Sinkin O V, Marks B S, Menyuk C R. Statistics of electrical dispersion compensator penalties of 10-Gb/s multimode fibre links with offset connectors. IEEE Photonics Technology Letters, 2007, 19(9): 689–691
CrossRef
Google scholar
|
[5] |
Tan Z, Yang C, Zhu Y, Xu Z, Zou K, Zhang F, Wang Z. High speed band-limited 850-nm VCSEL link based on time-domain interference elimination. IEEE Photonics Technology Letters, 2017, 29(9): 751–754
CrossRef
Google scholar
|
[6] |
Shen X, Kahn J M, Horowitz M A. Compensation for multimode fiber dispersion by adaptive optics. Optics Letters, 2005, 30(22): 2985–2987
CrossRef
Pubmed
Google scholar
|
[7] |
Geng L, Lee S H, William K A, Penty R V, White I H, Cunningham D G. Symmetrical 2-D Hermite-Gaussian square launch for high bit rate transmission in multimode fiber links. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWJ5
|
[8] |
Sim D H, Takushima Y, Chung Y C. High speed multimode fiber transmission by using mode-field matched center-launching technique. Journal of Lightwave Technology, 2009, 27(8): 1018–1026
CrossRef
Google scholar
|
[9] |
Ma L, Hanzawa N, Tsujikawa K, Azuma Y. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber. Optics Express, 2012, 20(22): 24903–24909
CrossRef
Pubmed
Google scholar
|
[10] |
Kocot C, Motaghiannezam S M R, Tatarczak A, Hallstein S, Lyubomirsky I, Askarov D, Daghighian H, Nelson S, Tatum J A. SWDM strategies to extend performance of VCSELs over MMF. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Tu2G.1
|
[11] |
Gasulla I, Capmany J. 1 Tb/s·km multimode fiber link combining WDM transmission and low-linewidth lasers. Optics Express, 2008, 16(11): 8033–8038
CrossRef
Pubmed
Google scholar
|
[12] |
Stuart H R. Dispersive multiplexing in multimode optical fiber. Science, 2000, 289(5477): 281–283
CrossRef
Pubmed
Google scholar
|
[13] |
Li G, Bai N, Zhao N, Xia C. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics, 2014, 6(4): 413–487
CrossRef
Google scholar
|
[14] |
Ryf R, Fontaine N K, Chen H, Guan B, Huang B, Esmaeelpour M, Gnauck A H, Randel S, Yoo S J B, Koonen A M J, Shubochkin R, Sun Y, Lingle R Jr. 23 Tbit/s transmission over 17-km conventional 50-μm graded-index multimode fiber. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5B.1
|
[15] |
Franz B, Bülow H. Experimental evaluation of principal mode groups as high-speed transmission channels in spatial multiplex systems. IEEE Photonics Technology Letters, 2012, 24(16): 1363–1365
CrossRef
Google scholar
|
[16] |
Chen H S, van den Boom P A, Koonen A M J. 30 Gbit/s 3 × 3 optical mode group division multiplexing system with mode-selective spatial filtering. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWB1
|
[17] |
Lenglé K, Insou X, Jian P, Barré N, Denolle B, Bramerie L, Labroille G. 4×10 Gbit/s bidirectional transmission over 2 km of conventional graded-index OM1 multimode fiber using mode group division multiplexing. Optics Express, 2016, 24(25): 28594–28605
CrossRef
Pubmed
Google scholar
|
[18] |
Stepniak G, Maksymiuk L, Siuzdak J. Binary-phase spatial light filters for mode-selective excitation of multimode fibers. Journal of Lightwave Technology, 2011, 29(13): 1980–1987
CrossRef
Google scholar
|
[19] |
Leuthold J, Hess R, Eckner J, Besse P A, Melchior H. Spatial mode filters realized with multimode interference couplers. Optics Letters, 1996, 21(11): 836–838
CrossRef
Pubmed
Google scholar
|
[20] |
Chen W, Wang P, Yang J. Optical mode interleaver based on asymmetric multimode Y junction. IEEE Photonics Technology Letters, 2014, 26(20): 2043–2046
CrossRef
Google scholar
|
[21] |
Kubota H, Takara H, Morioka T. T-shaped mode coupler for two-mode mode division multiplexing. IEICE Electronics Express, 2011, 8(22): 1927–1932
CrossRef
Google scholar
|
[22] |
Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Optics Express, 2014, 22(13): 15599–15607
CrossRef
Pubmed
Google scholar
|
[23] |
Al Amin A, Li A, Chen S, Chen X, Gao G, Shieh W. Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber. Optics Express, 2011, 19(17): 16672–16679
CrossRef
Pubmed
Google scholar
|
[24] |
Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tomita S, Koshiba M. Demonstration of mode-division multiplexing transmission over 10 km twomode fiber with mode coupler. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWA4
|
[25] |
Lenon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J. Mode-selective photonic lanterns for space division multiplexing. Optics Express, 2014, 22(1): 1036–1044
CrossRef
Google scholar
|
[26] |
Huang B, Fontaine N K, Ryf R, Guan B, Leon-Saval S G, Shubochkin R, Sun Y, Lingle R Jr, Li G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Optics Express, 2015, 23(1): 224–234
CrossRef
Pubmed
Google scholar
|
[27] |
Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K. Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers. Optics Express, 2015, 23(6): 7164–7172
CrossRef
Pubmed
Google scholar
|
[28] |
Igarashi K, Park K J, Soma D, Wakayama Y, Tsuritani T, Kim B Y. All-fiber-based selective mode multiplexer and demultiplexer for six-mode multiplexed signals. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper W2A.38
|
[29] |
Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G. All-fiber fused directional coupler for highly efficient spatial mode conversion. Optics Express, 2014, 22(10): 11610–11619
CrossRef
Pubmed
Google scholar
|
[30] |
Ren F, Li J, Hu T, Tang R, Yu J, Mo Q, He Y, Chen Z, Li Z. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics Journal, 2015, 7(5): 7903059
CrossRef
Google scholar
|
[31] |
Wu Z, Li J, Tian Y, Ge D, Zhu J, Mo Q, Ren F, Yu J, Li Z, Chen Z, He Y. 4-mode MDM transmission over MMF with direct detection enabled by cascaded mode-selective couplers. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th2A.40.
|
[32] |
Li A, Chen X, Amin A A, Ye J, Shieh W. Space-division multiplexed high-speed superchannel transmission over few-mode fiber. Journal of Lightwave Technology, 2012, 30(24): 3953–3964
CrossRef
Google scholar
|
[33] |
Yaman F, Bai N, Zhu B, Wang T, Li G. Long distance transmission in few-mode fibers. Optics Express, 2010, 18(12): 13250–13257
CrossRef
Pubmed
Google scholar
|
[34] |
Ho K P, Kahn J M. Linear propagation effects in mode-division multiplexing systems. Journal of Lightwave Technology, 2014, 32(4): 614–628
CrossRef
Google scholar
|
[35] |
Sillard P. Few-mode fibers for space division multiplexing. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Th1J.1
|
[36] |
Wu Z, Li J, Ge D, Ren F, Zhu P, Mo Q, Li Z, Chen Z, He Y. Demonstration of all-optical MDM/WDM switching for short-reach networks. Optics Express, 2016, 24(19): 21609–21618
CrossRef
Pubmed
Google scholar
|
[37] |
Tian Y, Li J, Wu Z, Chen Y, Zhu P, Tang R, Mo Q, He Y, Chen Z. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF. Optics Express, 2017, 25(14): 16603–16617
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |