Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection

Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE

PDF(3920 KB)
PDF(3920 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (1) : 31-40. DOI: 10.1007/s12200-018-0834-9
REVIEW ARTICLE
REVIEW ARTICLE

Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection

Author information +
History +

Abstract

Multi-mode fiber (MMF) links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks. Recently, mode division multiplexing (MDM) over MMF has been proposed, in which different modes in MMF are utilized as spatial channels for data transmission. Strongly-coupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output (MIMO) digital signal processing (DSP) are complex and expensive for short-reach transmission. So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed. In this way, the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection (IM-DD). In this paper, we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF, including mode characteristic in MMF and weakly-coupled mode multiplexer/demultiplexer (MUX/DEMUX). We also present the up-to-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF. We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.

Keywords

multi-mode fiber (MMF) / mode division multiplexing (MDM) / weak mode coupling / intensity modulation and direct detection (IM-DD)

Cite this article

Download citation ▾
Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection. Front. Optoelectron., 2019, 12(1): 31‒40 https://doi.org/10.1007/s12200-018-0834-9

References

[1]
Olshansky R. Mode coupling effects in graded-index optical fibers. Applied Optics, 1975, 14(4): 935–945
CrossRef Pubmed Google scholar
[2]
IEEE 802.3 Standard for Ethernet, section 4, http://standards.ieee.org/about/get/802/802.3.html
[3]
Freund R E, Bunge C A, Ledentsov N N, Molin D, Caspar Ch. High-speed transmission in multimode fibers. Journal of Lightwave Technology, 2010, 28(4): 569–586
CrossRef Google scholar
[4]
Sun Y, Hallemeier P, Ereifej H, Sinkin O V, Marks B S, Menyuk C R. Statistics of electrical dispersion compensator penalties of 10-Gb/s multimode fibre links with offset connectors. IEEE Photonics Technology Letters, 2007, 19(9): 689–691
CrossRef Google scholar
[5]
Tan Z, Yang C, Zhu Y, Xu Z, Zou K, Zhang F, Wang Z. High speed band-limited 850-nm VCSEL link based on time-domain interference elimination. IEEE Photonics Technology Letters, 2017, 29(9): 751–754
CrossRef Google scholar
[6]
Shen X, Kahn J M, Horowitz M A. Compensation for multimode fiber dispersion by adaptive optics. Optics Letters, 2005, 30(22): 2985–2987
CrossRef Pubmed Google scholar
[7]
Geng L, Lee S H, William K A, Penty R V, White I H, Cunningham D G. Symmetrical 2-D Hermite-Gaussian square launch for high bit rate transmission in multimode fiber links. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWJ5
[8]
Sim D H, Takushima Y, Chung Y C. High speed multimode fiber transmission by using mode-field matched center-launching technique. Journal of Lightwave Technology, 2009, 27(8): 1018–1026
CrossRef Google scholar
[9]
Ma L, Hanzawa N, Tsujikawa K, Azuma Y. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber. Optics Express, 2012, 20(22): 24903–24909
CrossRef Pubmed Google scholar
[10]
Kocot C, Motaghiannezam S M R, Tatarczak A, Hallstein S, Lyubomirsky I, Askarov D, Daghighian H, Nelson S, Tatum J A. SWDM strategies to extend performance of VCSELs over MMF. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Tu2G.1
[11]
Gasulla I, Capmany J. 1 Tb/s·km multimode fiber link combining WDM transmission and low-linewidth lasers. Optics Express, 2008, 16(11): 8033–8038
CrossRef Pubmed Google scholar
[12]
Stuart H R. Dispersive multiplexing in multimode optical fiber. Science, 2000, 289(5477): 281–283
CrossRef Pubmed Google scholar
[13]
Li G, Bai N, Zhao N, Xia C. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics, 2014, 6(4): 413–487
CrossRef Google scholar
[14]
Ryf R, Fontaine N K, Chen H, Guan B, Huang B, Esmaeelpour M, Gnauck A H, Randel S, Yoo S J B, Koonen A M J, Shubochkin R, Sun Y, Lingle R Jr. 23 Tbit/s transmission over 17-km conventional 50-μm graded-index multimode fiber. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5B.1
[15]
Franz B, Bülow H. Experimental evaluation of principal mode groups as high-speed transmission channels in spatial multiplex systems. IEEE Photonics Technology Letters, 2012, 24(16): 1363–1365
CrossRef Google scholar
[16]
Chen H S, van den Boom P A, Koonen A M J. 30 Gbit/s 3 × 3 optical mode group division multiplexing system with mode-selective spatial filtering. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWB1
[17]
Lenglé K, Insou X, Jian P, Barré N, Denolle B, Bramerie L, Labroille G. 4×10 Gbit/s bidirectional transmission over 2 km of conventional graded-index OM1 multimode fiber using mode group division multiplexing. Optics Express, 2016, 24(25): 28594–28605
CrossRef Pubmed Google scholar
[18]
Stepniak G, Maksymiuk L, Siuzdak J. Binary-phase spatial light filters for mode-selective excitation of multimode fibers. Journal of Lightwave Technology, 2011, 29(13): 1980–1987
CrossRef Google scholar
[19]
Leuthold J, Hess R, Eckner J, Besse P A, Melchior H. Spatial mode filters realized with multimode interference couplers. Optics Letters, 1996, 21(11): 836–838
CrossRef Pubmed Google scholar
[20]
Chen W, Wang P, Yang J. Optical mode interleaver based on asymmetric multimode Y junction. IEEE Photonics Technology Letters, 2014, 26(20): 2043–2046
CrossRef Google scholar
[21]
Kubota H, Takara H, Morioka T. T-shaped mode coupler for two-mode mode division multiplexing. IEICE Electronics Express, 2011, 8(22): 1927–1932
CrossRef Google scholar
[22]
Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Optics Express, 2014, 22(13): 15599–15607
CrossRef Pubmed Google scholar
[23]
Al Amin A, Li A, Chen S, Chen X, Gao G, Shieh W. Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber. Optics Express, 2011, 19(17): 16672–16679
CrossRef Pubmed Google scholar
[24]
Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tomita S, Koshiba M. Demonstration of mode-division multiplexing transmission over 10 km twomode fiber with mode coupler. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWA4
[25]
Lenon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J. Mode-selective photonic lanterns for space division multiplexing. Optics Express, 2014, 22(1): 1036–1044
CrossRef Google scholar
[26]
Huang B, Fontaine N K, Ryf R, Guan B, Leon-Saval S G, Shubochkin R, Sun Y, Lingle R Jr, Li G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Optics Express, 2015, 23(1): 224–234
CrossRef Pubmed Google scholar
[27]
Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K. Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers. Optics Express, 2015, 23(6): 7164–7172
CrossRef Pubmed Google scholar
[28]
Igarashi K, Park K J, Soma D, Wakayama Y, Tsuritani T, Kim B Y. All-fiber-based selective mode multiplexer and demultiplexer for six-mode multiplexed signals. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper W2A.38
[29]
Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G. All-fiber fused directional coupler for highly efficient spatial mode conversion. Optics Express, 2014, 22(10): 11610–11619
CrossRef Pubmed Google scholar
[30]
Ren F, Li J, Hu T, Tang R, Yu J, Mo Q, He Y, Chen Z, Li Z. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics Journal, 2015, 7(5): 7903059
CrossRef Google scholar
[31]
Wu Z, Li J, Tian Y, Ge D, Zhu J, Mo Q, Ren F, Yu J, Li Z, Chen Z, He Y. 4-mode MDM transmission over MMF with direct detection enabled by cascaded mode-selective couplers. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th2A.40.
[32]
Li A, Chen X, Amin A A, Ye J, Shieh W. Space-division multiplexed high-speed superchannel transmission over few-mode fiber. Journal of Lightwave Technology, 2012, 30(24): 3953–3964
CrossRef Google scholar
[33]
Yaman F, Bai N, Zhu B, Wang T, Li G. Long distance transmission in few-mode fibers. Optics Express, 2010, 18(12): 13250–13257
CrossRef Pubmed Google scholar
[34]
Ho K P, Kahn J M. Linear propagation effects in mode-division multiplexing systems. Journal of Lightwave Technology, 2014, 32(4): 614–628
CrossRef Google scholar
[35]
Sillard P. Few-mode fibers for space division multiplexing. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Th1J.1
[36]
Wu Z, Li J, Ge D, Ren F, Zhu P, Mo Q, Li Z, Chen Z, He Y. Demonstration of all-optical MDM/WDM switching for short-reach networks. Optics Express, 2016, 24(19): 21609–21618
CrossRef Pubmed Google scholar
[37]
Tian Y, Li J, Wu Z, Chen Y, Zhu P, Tang R, Mo Q, He Y, Chen Z. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF. Optics Express, 2017, 25(14): 16603–16617
CrossRef Pubmed Google scholar

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 61771024, 61627814, 61505002, 61690194 and 61605004), and Fundamental Research Project of Shenzhen Science and Technology Foundation (Nos. JCYJ 20170412153729436 and 20170307172513653).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3920 KB)

Accesses

Citations

Detail

Sections
Recommended

/