Fabrication and characterization of ZnO/Se1−xTex solar cells

Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang

PDF(1524 KB)
PDF(1524 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 36. DOI: 10.1007/s12200-022-00040-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication and characterization of ZnO/Se1−xTex solar cells

Author information +
History +

Abstract

Selenium (Se) element is a promising light-harvesting material for solar cells because of the large absorption coefficient and prominent photoconductivity. However, the efficiency of Se solar cells has been stagnated for a long time owing to the suboptimal bandgap (> 1.8 eV) and the lack of a proper electron transport layer. In this work, we tune the bandgap of the absorber to the optimal value of Shockley–Queisser limit (1.36 eV) by alloying 30% Te with 70% Se. Simultaneously, ZnO electron transport layer is selected because of the proper band alignment, and the mild reaction at ZnO/Se0.7Te0.3 interface guarantees a good-quality heterojunction. Finally, a superior efficiency of 1.85% is achieved on ZnO/Se0.7Te0.3 solar cells.

Graphical abstract

Keywords

Se1−xTex alloy / ZnO electron transport layer / Recombination mechanism / Solar cells

Cite this article

Download citation ▾
Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang. Fabrication and characterization of ZnO/Se1−xTex solar cells. Front. Optoelectron., 2022, 15(3): 36 https://doi.org/10.1007/s12200-022-00040-5

References

[1]
Fritts, C.E.: On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. 26(156), 465–472 (1883)
CrossRef Google scholar
[2]
Bhatnagar, A.K., Reddy, K.V., Srivastava, V.: Optical energy gap of amorphous selenium: effect of annealing. J. Appl. Phys. 18(9), 149 (1985)
CrossRef Google scholar
[3]
Tutihasi, S., Chen, I.: Optical properties and band structure of trigonal selenium. Phys. Rev. 158(3), 623–630 (1967)
CrossRef Google scholar
[4]
Dowd, J.J.: Optical properties of selenium. Proc. Phys. Soc. B 64(9), 783–789 (1951)
CrossRef Google scholar
[5]
Hegedus, S.S., Shafarman, W.N.: Thin-film solar cells: device measurements and analysis. Prog. Photovolt. Res. Appl. 12(23), 155–176 (2004)
CrossRef Google scholar
[6]
Rau, U., Werner, J.H.: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84(19), 3735–3737 (2004)
CrossRef Google scholar
[7]
Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Int. J. Photovolt. 9(6), 1863–1867 (2019)
CrossRef Google scholar
[8]
Yoo, J.J., Seo, G., Chua, M.R., Park, T.G., Lu, Y., Rotermund, F., Kim, Y.K., Moon, C.S., Jeon, N.J., Correa-Baena, J.P., Bulović, V., Shin, S.S., Bawendi, M.G., Seo, J.: Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021)
CrossRef Google scholar
[9]
Yang, G., Zhang, H., Li, S., Ren, Z., Fang, G., Lei, D., Li, G.: Enhanced efficiency and stability of triple-cation perovskite solar cells with CsPbIxBr3–x QDs „surface patches”. SmartMat 3(3), 513–521 (2022)
CrossRef Google scholar
[10]
Liu, Y., Dong, B., Hagfeldt, A., Luo, J., Graetzel, M.: Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2(1), 33–37 (2021)
CrossRef Google scholar
[11]
Romeo, A., Artegiani, E.: CdTe-based thin film solar cells: past, present and future. Energies 14(6), 1684 (2021)
CrossRef Google scholar
[12]
Brooks, L.S.: The vapor pressures of tellurium and selenium. J. Am. Chem. Soc. 74(1), 227–229 (1952)
CrossRef Google scholar
[13]
Ito, H., Oka, M., Ogino, T., Takeda, A., Mizushima, Y.: Selenium thin-film solar cell. Jpn. J. Appl. Phys. 23(Part 1, No. 6), 719–725 (1984)
CrossRef Google scholar
[14]
Nakada, T., Kunioka, A.: Efficient ITO/Se heterojunction solar cells. Jpn. J. Appl. Phys. 23(Part 2, No. 8), 587 (1984)
CrossRef Google scholar
[15]
Nakada, T., Kunioka, A.: Polycrystalline thin-film TiO2/Se solar cells. Jpn. J. Appl. Phys. 24(Part 2, No. 7), 536 (1985)
CrossRef Google scholar
[16]
Nguyen, D.C., Tanaka, S., Nishino, H., Manabe, K., Ito, S.: 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode. Nanoscale Res. Lett. 8(1), 8 (2013)
CrossRef Google scholar
[17]
Todorov, T.K., Singh, S., Bishop, D.M., Gunawan, O., Lee, Y.S., Gershon, T.S., Brew, K.W., Antunez, P.D., Haight, R.: Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat. Commun. 8(1), 682 (2017)
CrossRef Google scholar
[18]
Tennakone, K., Kumara, G., Kottegoda, I., Perera, V., Aponsu, G.: Nanoporous n-/selenium/p-CuCNS photovoltaic cell. J. Phys. D Appl. Phys. 31(18), 2326–2330 (1998)
CrossRef Google scholar
[19]
Wang, K., Shi, Y., Zhang, H., Xing, Y., Dong, Q., Ma, T.: Selenium as a photoabsorber for inorganic-organic hybrid solar cells. Phys. Chem. Chem. Phys. 16(42), 23316–23319 (2014)
CrossRef Google scholar
[20]
Zhu, M., Hao, F., Ma, L., Song, T.B., Miller, C.E., Wasielewski, C.E., Li, X., Kanatzidis, M.G.: Solution-processed air-stable mesoscopic selenium solar cells. ACS Energy Lett. 1(2), 469–473 (2016)
CrossRef Google scholar
[21]
Green, M.A.: The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009)
CrossRef Google scholar
[22]
Green, M.A., Blakers, A.W., Shi, J., Keller, E.M., Wenham, S.R.: 19.1% efficient silicon solar cell. Appl. Phys. Lett. 44(12), 1163–1164 (1984)
CrossRef Google scholar
[23]
Anzin, V.B., Eremets, M.I., Kosichkin, Y.V., Nadezhdinskii, A.I., Shirokov, A.M.: Measurement of the energy gap in tellurium under pressure. Phys. Status Solidi A Appl. Res. 42(1), 385–390 (1977)
CrossRef Google scholar
[24]
Asendorf, R.: Space group of tellurium and selenium. J. Chem. Phys. 27(1), 11–16 (1957)
CrossRef Google scholar
[25]
Yang, P., Zha, J., Gao, G., Zheng, L., Huang, H., Xia, Y., Xu, S., Xiong, T., Zhang, Z., Yang, Z.: Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 14(1), 1–12 (2022)
CrossRef Google scholar
[26]
Lin, Z., Wang, C., Chai, Y.: Emerging group-VI elemental 2D materials: preparations, properties, and device applications. Small 16(41), 2003319 (2020)
CrossRef Google scholar
[27]
Jiang, J., Meng, F., Cheng, Q., Wang, A., Chen, Y., Qiao, J., Pang, J., Xu, W., Ji, H., Zhang, Y., Zhang, Q., Wang, S., Feng, X., Gu, L., Liu, H., Han, L.: Low lattice mismatch InSe–Se vertical Van der Waals heterostructure for high-performance transistors via strong Fermi-level depinning. Small Methods 4(8), 2000238 (2020)
CrossRef Google scholar
[28]
Zhang, S., Pang, J., Cheng, Q., Yang, F., Chen, Y., Liu, Y., Li, Y., Gemming, T., Liu, X., Ibarlucea, B., Yang, J., Liu, H., Zhou, W., Cuniberti, G., Rümmeli, M.H.: High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. InfoMat 3(12), 1455–1469 (2021)
CrossRef Google scholar
[29]
Wang, Y., Pang, J., Cheng, Q., Han, L., Li, Y., Meng, X., Ibarlucea, B., Zhao, H., Yang, F., Liu, H.: Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13(1), 1–52 (2021)
CrossRef Google scholar
[30]
Hadar, I., Hu, X., Luo, Z., Dravid, V.P., Kanatzidis, M.G.: Nonlinear band gap tunability in selenium–tellurium alloys and its utilization in solar cells. ACS Energy Lett. 4(9), 2137–2143 (2019)
CrossRef Google scholar
[31]
Tan, C., Amani, M., Zhao, C., Hettick, M., Song, X., Lien, D.H., Li, H., Yeh, M., Shrestha, V.R., Crozier, K.B., Scott, M.C., Javey, A.: Evaporated SexTe1−x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020)
CrossRef Google scholar
[32]
Cui, S., Chahal, R., Boussard-Plédel, C., Nazabal, V., Doualan, J.L., Troles, J., Lucas, J., Bureau, B.: From selenium- to telluriumbased glass optical fibers for infrared spectroscopies. Molecules 18(5), 5373–5388 (2013)
CrossRef Google scholar
[33]
Jayah, N.A., Yahaya, H., Mahmood, M.R., Terasako, T., Yasui, K., Hashim, A.M.: High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Res. Lett. 10(1), 7 (2015)
CrossRef Google scholar
[34]
Ting, H., Ni, L., Ma, S., Ma, Y., Xiao, L., Chen, Z.: Progress in electron-transport materials in application of perovskite solar cells. Acta Phys. Sin. 64(3), 038802 (2015)
CrossRef Google scholar
[35]
Jauncey, G.E.M.: The scattering of X-rays and Bragg’s law. Proc. Natl. Acad. Sci. U.S.A. 10(2), 57–60 (1924)
CrossRef Google scholar
[36]
Tauc, J.: Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5(8), 721–729 (1970)
CrossRef Google scholar
[37]
Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161–3164 (1991)
CrossRef Google scholar
[38]
Carson, E.M., Watson, J.R.: Undergraduate students’ understandings of entropy and Gibbs free energy. U. Chem. Ed. 6, 4–12 (2002)
[39]
Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill, New York (1999)
[40]
Olin, A., Olang, B.N., Osadchii, E.G., Ohman, L.O., Rosen, E.: Chemical Thermodynamics of Selenium, OECD Nuclear Energy Agency, France (2005)
[41]
Scheer, R., Schock, H.W.: Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley-VCH, Baden-Württemberg, Germany (2011)
CrossRef Google scholar
[42]
Parr, R.G.: Density functional theory. Annu. Rev. Phys. Chem. 34(1), 631–656 (1983)
CrossRef Google scholar
[43]
Li, M., Chen, S., Zhao, X., Xiong, K., Wang, B., Shah, U.A., Gao, L., Lan, X.Z., Zhang, J.B., Hsu, H.Y., Tang, J., Song, H.: Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)
CrossRef Google scholar
[44]
Chen, W., Zhang, N., Zhang, M.Y., Zhang, X.T., Gao, H., Wen, J.: Controllable growth of ZnO–ZnSe heterostructures for visiblelight photocatalysis. CrystEngComm 16(6), 1201–1206 (2014)
CrossRef Google scholar
[45]
Gokmen, T., Gunawan, O., Mitzi, D.B.: Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. J. Appl. Phys. 114(11), 114511 (2013)
CrossRef Google scholar
[46]
Sites, J.R., Mauk, P.H.: Diode quality factor determination for thin-film solar cells. Solar cells 27(1), 411-417 (1989)
CrossRef Google scholar
[47]
Sites, J.R.: Quantification of losses in thin-film polycrystalline solar cells. Sol. Energy Mater. Sol. Cells 75(1–2), 243–251 (2003)
CrossRef Google scholar
[48]
Liu, Y., Wu, W., Goddard, W.A., 3rd.: Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140(2), 550–553 (2018)
CrossRef Google scholar
[49]
Cao, Y., Zhu, X., Tong, X., Zhou, J., Ni, J., Zhang, J., Pang, J.: Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 14(6), 997–1005 (2020)
CrossRef Google scholar
[50]
Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R.G., Yan, Y.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28(42), 9333–9340 (2016)
CrossRef Google scholar
[51]
Shockley, W., Queisser, H.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)
CrossRef Google scholar
[52]
Abou-Ras, D., Kirchartz, T., Rau, U.: Advanced Characterization Techniques for Thin Film Solar Cells. Wiley-VCH, Germany (2016)
CrossRef Google scholar
[53]
Proskuryakov, Y.Y., Durose, K., Taele, B.M., Welch, G.P., Oelting, S.: Admittance spectroscopy of CdTe∕CdS solar cells subjected to varied nitric-phosphoric etching conditions. J. Appl. Phys. 101(1), 014505 (2007)
CrossRef Google scholar
[54]
Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)
CrossRef Google scholar
[55]
Walter, T., Herberholz, R., Müller, C., Schock, H.W.: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996)
CrossRef Google scholar
[56]
McCandless, B.E., Buchanan, W.A., Thompson, C.P., Sriramagiri, G., Lovelett, R.J., Duenow, J., Albin, D., Jensen, S., Colegrove, E., Moseley, J., Moutinho, H., Harvey, S., Al-Jassim, M., Metzger, W.K.: Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping. Sci. Rep. 8(1), 14519 (2018)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1524 KB)

Accesses

Citations

Detail

Sections
Recommended

/