Time-domain terahertz spectroscopy in high magnetic fields

Andrey BAYDIN, Takuma MAKIHARA, Nicolas Marquez PERACA, Junichiro KONO

PDF(2571 KB)
PDF(2571 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (1) : 110-129. DOI: 10.1007/s12200-020-1101-4
REVIEW ARTICLE
REVIEW ARTICLE

Time-domain terahertz spectroscopy in high magnetic fields

Author information +
History +

Abstract

There are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.

Graphical abstract

Keywords

high magnetic field / terahertz time-domain spectroscopy (THz-TDS)

Cite this article

Download citation ▾
Andrey BAYDIN, Takuma MAKIHARA, Nicolas Marquez PERACA, Junichiro KONO. Time-domain terahertz spectroscopy in high magnetic fields. Front. Optoelectron., 2021, 14(1): 110‒129 https://doi.org/10.1007/s12200-020-1101-4

References

[1]
Nuss M C, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Sub-millimeter Wave Spectroscopy of Solids. Berlin: Springer-Verlag, 1998, Chap. 2, 7–50
[2]
Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews, 2004, 104(4): 1759–1780
CrossRef Pubmed Google scholar
[3]
Lee Y S. Principles of Terahertz Science and Technology, vol. 170. Berlin: Springer, 2009
[4]
Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
CrossRef Google scholar
[5]
Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
CrossRef Google scholar
[6]
Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). Journal of Applied Physics, 2018, 124(23): 231101
CrossRef Google scholar
[7]
Cong K, Noe G T II, Kono J. Excitons in Magnetic Fields. Oxford: Elsevier, 2018, 63–81
[8]
MacDonald A H, Rezayi E H. Fractional quantum Hall effect in a two-dimensional electron-hole fluid. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 3224–3227
CrossRef Pubmed Google scholar
[9]
Dzyubenko A B, Lozovik Y E. Symmetry of Hamiltonians of quantum two-component systems: condensate of composite particles as an exact eigenstate. Journal of Physics A, Mathematical and General, 1991, 24(2): 415–424
CrossRef Google scholar
[10]
Apal’kov V M, Rashba E I. Magnetospectroscopy of 2D electron-gas: cusps in emission-spectra and Coulomb gaps. JETP Letters, 1991, 53: 442–448
[11]
Rashba E I, Sturge M D, Yoon H W, Pfeiffer L N. Hidden symmetry and the magnetically induced “Mott transition” in quantum wells containing an electron gas. Solid State Communications, 2000, 114(11): 593–596
CrossRef Google scholar
[12]
Proust C, Taillefer L. The remarkable underlying ground states of cuprate superconductors. Annual Review of Condensed Matter Physics, 2019, 10(1): 409–429
CrossRef Google scholar
[13]
Shi Z, Baity P G, Sasagawa T, Popović D. Vortex phase diagram and the normal state of cuprates with charge and spin orders. Science Advances, 2020, 6(7): eaay8946
CrossRef Pubmed Google scholar
[14]
Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P. Extreme magnetic field-boosted superconductivity. Nature Physics, 2019, 15(12): 1250–1254
CrossRef Google scholar
[15]
Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L. Multicomponent fractional quantum Hall effect in graphene. Nature Physics, 2011, 7(9): 693–696
CrossRef Google scholar
[16]
Moll P J, Potter A C, Nair N L, Ramshaw B J, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R, Ronning F, Analytis J G. Magnetic torque anomaly in the quantum limit of Weyl semimetals. Nature Communications, 2016, 7(1): 12492
CrossRef Pubmed Google scholar
[17]
Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
CrossRef Google scholar
[18]
Wu Q, Zhang X C. Ultrafast electro-optic field sensors. Applied Physics Letters, 1996, 68(12): 1604–1606
CrossRef Google scholar
[19]
Nahata A, Weling A S, Heinz T F. A wide-band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321–2323
CrossRef Google scholar
[20]
Wu Q, Zhang X C. 7 terahertz broadband GaP electro-optic sensor. Applied Physics Letters, 1997, 70(14): 1784–1786
CrossRef Google scholar
[21]
Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193
CrossRef Google scholar
[22]
Liu K, Xu J, Zhang X C. GaSe crystals for broadband terahertz wave detection. Applied Physics Letters, 2004, 85(6): 863–865
CrossRef Google scholar
[23]
Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
CrossRef Google scholar
[24]
Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A66–A73
CrossRef Google scholar
[25]
Elzinga P A, Kneisler R J, Lytle F E, Jiang Y, King G B, Laurendeau N M. Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling. Applied Optics, 1987, 26(19): 4303–4309
CrossRef Pubmed Google scholar
[26]
Janke C, Först M, Nagel M, Kurz H, Bartels A. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters, 2005, 30(11): 1405–1407
CrossRef Pubmed Google scholar
[27]
Yasui T, Saneyoshi E, Araki T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Applied Physics Letters, 2005, 87(6): 061101
CrossRef Google scholar
[28]
Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Review of Scientific Instruments, 2007, 78(3): 035107
CrossRef Pubmed Google scholar
[29]
Spencer B, Smith W F, Hibberd M T, Dawson P, Beck M, Bartels A, Guiney I, Humphreys C J, Graham D M. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique. Applied Physics Letters, 2016, 108(21): 212101
CrossRef Google scholar
[30]
Tauser F, Rausch C, Posthumus J H, Lison F. Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers. In: Proceedings of Commercial and Biomedical Applications of Ultrafast Lasers VIII. San Jose: SPIE, 2008, 68810O
[31]
Kim Y, Yee D S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Optics Letters, 2010, 35(22): 3715–3717
CrossRef Pubmed Google scholar
[32]
Liu J, Mbonye M K, Mendis R, Mittleman D M. Measurement of terahertz pulses using electronically controlled optical sampling (ECOPS). In: Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications. San Jose: IEEE, 2010, 1–2
[33]
Noe G T II, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855
CrossRef Pubmed Google scholar
[34]
Molter D, Ellrich F, Weinland T, George S, Goiran M, Keilmann F, Beigang R, Léotin J. High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field. Optics Express, 2010, 18(25): 26163–26168
CrossRef Pubmed Google scholar
[35]
Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments, 2015, 86(5): 051301
CrossRef Pubmed Google scholar
[36]
Minami Y, Hayashi Y, Takeda J, Katayama I. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Applied Physics Letters, 2013, 103(5): 051103
CrossRef Google scholar
[37]
Topp M, Rentzepis P, Jones R. Time-resolved absorption spectroscopy in the 10–12-sec range. Journal of Applied Physics, 1971, 42(9): 3415–3419
CrossRef Google scholar
[38]
Topp M, Rentzepis P, Jones R. Time resolved picosecond emission spectroscopy of organic dye lasers. Chemical Physics Letters, 1971, 9(1): 1–5
CrossRef Google scholar
[39]
Kim K Y, Yellampalle B, Taylor A J, Rodriguez G, Glownia J H. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons. Optics Letters, 2007, 32(14): 1968–1970
CrossRef Pubmed Google scholar
[40]
Katayama I, Sakaibara H, Takeda J. Real-time time-frequency imaging of ultrashort laser pulses using an echelon mirror. Japanese Journal of Applied Physics, 2011, 50(10): 102701
CrossRef Google scholar
[41]
Noe G T II, Katayama I, Katsutani F, Allred J J, Horowitz J A, Sullivan D M, Zhang Q, Sekiguchi F, Woods G L, Hoffmann M C, Nojiri H, Takeda J, Kono J. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Optics Express, 2016, 24(26): 30328–30337
CrossRef Pubmed Google scholar
[42]
Makihara T, Hayashida K, Noe G T II, Li X, Kono J. Magnonic quantum simulator of antiresonant ultrastrong light-matter coupling. 2020, arXiv:2008:10721
[43]
Jiang Z, Zhang X C. Electro-optic measurement of THz field pulses with a chirped optical beam. Applied Physics Letters, 1998, 72(16): 1945–1947
CrossRef Google scholar
[44]
Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging. Optics Letters, 1998, 23(14): 1114–1116
CrossRef Pubmed Google scholar
[45]
Matlis N, Plateau G, van Tilborg J, Leemans W. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 23–27
CrossRef Google scholar
[46]
Noe G T II, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855
CrossRef Pubmed Google scholar
[47]
Walecki W, Some D, Kozlov V, Nurmikko A. Terahertz electromagnetic transients as probes of a two-dimensional electron gas. Applied Physics Letters, 1993, 63(13): 1809–1811
CrossRef Google scholar
[48]
Some D, Nurmikko A V. Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures. Applied Physics Letters, 1994, 65(26): 3377–3379
CrossRef Google scholar
[49]
Some D, Nurmikko A V. Coherent transient cyclotron emission from photoexcited GaAs. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(8): 5783–5786
CrossRef Pubmed Google scholar
[50]
Some D, Nurmikko A V. Ultrafast photoexcited cyclotron emission: contributions from real and virtual excitations. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(20): R13295–R13298
CrossRef Pubmed Google scholar
[51]
Crooker S A. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264
CrossRef Google scholar
[52]
Wang X, Hilton D J, Ren L, Mittleman D M, Kono J, Reno J L. Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas. Optics Letters, 2007, 32(13): 1845–1847
CrossRef Pubmed Google scholar
[53]
Sumikura H, Nagashima T, Kitahara H, Hangyo M. Development of a cryogen-free terahertz time-domain magnetooptical measurement system. Japanese Journal of Applied Physics, 2007, 46(4A): 1739–1744
CrossRef Google scholar
[54]
Ikebe Y, Shimano R. Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect. Applied Physics Letters, 2008, 92(1): 012111
CrossRef Google scholar
[55]
Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326
CrossRef Pubmed Google scholar
[56]
George D K, Stier A V, Ellis C T, McCombe B D, Černe J, Markelz A G. Terahertz magneto-optical polarization modulation spectroscopy. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(6): 1406–1412
CrossRef Google scholar
[57]
Wood C D, Mistry D, Li L H, Cunningham J E, Linfield E H, Davies A G. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems. Review of Scientific Instruments, 2013, 84(8): 085101
CrossRef Pubmed Google scholar
[58]
Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science, 2016, 354(6316): 1124–1127
CrossRef Pubmed Google scholar
[59]
Crooker S. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264
CrossRef Google scholar
[60]
Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nature Physics, 2010, 6(2): 126–130
CrossRef Google scholar
[61]
Arikawa T, Wang X, Hilton D J, Reno J L, Pan W, Kono J. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(24): 241307
[62]
Arikawa T, Wang X, Belyanin A A, Kono J. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Optics Express, 2012, 20(17): 19484–19492
CrossRef Pubmed Google scholar
[63]
Zhang Q, Arikawa T, Kato E, Reno J L, Pan W, Watson J D, Manfra M J, Zudov M A, Tokman M, Erukhimova M, Belyanin A, Kono J. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Physical Review Letters, 2014, 113(4): 047601
CrossRef Pubmed Google scholar
[64]
Zhang Q, Lou M, Li X, Reno J L, Pan W, Watson J D, Manfra M J, Kono J. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nature Physics, 2016, 12(11): 1005–1011
CrossRef Google scholar
[65]
Li X, Bamba M, Zhang Q, Fallahi S, Gardner G C, Gao W, Lou M, Yoshioka K, Manfra M J, Kono J. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nature Photonics, 2018, 12(6): 324–329
CrossRef Google scholar
[66]
Li X, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M, Xu K, Jin Z, Ren W, Ma G, Cao S, Turchinovich D, Kono J. Observation of Dicke cooperativity in magnetic interactions. Science, 2018, 361(6404): 794–797
CrossRef Pubmed Google scholar
[67]
Toth J, Bird M D, Bole S, O’Reilly J W. Fabrication and assembly of the NHMFL 25 T resistive split magnet. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4301604
CrossRef Google scholar
[68]
Curtis J A, Burch A D, Barman B, Linn A G, McClintock L M, O’Beirne A L, Stiles M J, Reno J L, McGill S A, Karaiskaj D, Hilton D J. Broadband ultrafast terahertz spectroscopy in the 25 T Split Florida-Helix. Review of Scientific Instruments, 2018, 89(7): 073901
CrossRef Pubmed Google scholar
[69]
Curtis J A, Tokumoto T, Nolan N K, McClintock L M, Cherian J G, McGill S A, Hilton D J. Ultrafast pump-probe spectroscopy in gallium arsenide at 25 T. Optics Letters, 2014, 39(19): 5772–5775
CrossRef Pubmed Google scholar
[70]
Paul J, Stevens C E, Smith R P, Dey P, Mapara V, Semenov D, McGill S A, Kaindl R A, Hilton D J, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. Review of Scientific Instruments, 2019, 90(6): 063901
CrossRef Pubmed Google scholar
[71]
Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
CrossRef Google scholar
[72]
Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122
CrossRef Pubmed Google scholar
[73]
Molter D, Torosyan G, Ballon G, Drigo L, Beigang R, Léotin J. Step-scan time-domain terahertz magneto-spectroscopy. Optics Express, 2012, 20(6): 5993–6002
CrossRef Pubmed Google scholar
[74]
Noe G T II, Nojiri H, Lee J, Woods G L, Léotin J, Kono J. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Review of Scientific Instruments, 2013, 84(12): 123906
CrossRef Pubmed Google scholar
[75]
Post K W, Legros A, Rickel D G, Singleton J, McDonald R D, He X, Bozovic I, Xu X, Shi X, Armitage N P, Crooker S A. Observation of cyclotron resonance and measurement of the hole mass in optimally-doped La2−xSrxCuO4. 2020, arXiv:2006.09131
[76]
Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
CrossRef Google scholar
[77]
McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. I. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 37. New York: Academic Press, 1975, 1–78
[78]
Mittleman D M. Sensing with Terahertz Radiation. Berlin: Springer, 2003
[79]
Basov D N, Averitt R D, VanDerMarel D, Dressel M, Haule K. Electrodynamics of correlated electron materials. Reviews of Modern Physics, 2011, 83(2): 471–541
CrossRef Google scholar
[80]
Dexheimer S L. Terahertz Spectroscopy: Principles and Applications. Boca Raton, Florida: CRC press, 2017
[81]
Kézsmárki I, Szaller D, Bordács S, Kocsis V, Tokunaga Y, Taguchi Y, Murakawa H, Tokura Y, Engelkamp H, Rõõm T, Nagel U. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nature Communications, 2014, 5(1): 3203
CrossRef Pubmed Google scholar
[82]
Bordács S, Kézsmárki I, Szaller D, Demkó L, Kida N, Murakawa H, Onose Y, Shimano R, Rõõm T, Nagel U, Miyahara S, Furukawa N, Tokura Y. Chirality of matter shows up via spin excitations. Nature Physics, 2012, 8(10): 734–738
CrossRef Google scholar
[83]
Penc K, Romhányi J, Rõõm T, Nagel U, Antal A, Fehér T, Jánossy A, Engelkamp H, Murakawa H, Tokura Y, Szaller D, Bordács S, Kézsmárki I. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. Physical Review Letters, 2012, 108(25): 257203
CrossRef Pubmed Google scholar
[84]
Peedu L, Kocsis V, Szaller D, Viirok J, Nagel U, Rõõm T, Farkas D G, Bordács S, Kamenskyi D L, Zeitler U, Tokunaga Y, Taguchi Y, Tokura Y, Kézsmárki I. Spin excitations of magnetoelectric LiNiPO4 in multiple magnetic phases. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(2): 024406
CrossRef Google scholar
[85]
Talbayev D, LaForge A D, Trugman S A, Hur N, Taylor A J, Averitt R D, Basov D N. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Physical Review Letters, 2008, 101(24): 247601
CrossRef Pubmed Google scholar
[86]
Mihály L, Talbayev D, Kiss L F, Zhou J, Fehér T, Jánossy A. Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(2): 024414
CrossRef Google scholar
[87]
Mihály L, Fehér T, Dóra B, Náfrádi B, Berger H, Forró L. Spin resonance in the ordered magnetic state of Ni5(TeO3)4Cl2. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(17): 174403
CrossRef Google scholar
[88]
Kézsmárki I, Nagel U, Bordács S, Fishman R S, Lee J H, Yi H T, Cheong S W, Rõõm T. Optical diode effect at spin-wave excitations of the room-temperature multiferroic BiFeO3. Physical Review Letters, 2015, 115(12): 127203
CrossRef Pubmed Google scholar
[89]
Autore M, Engelkamp H, D’Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S. Observation of magnetoplasmons in Bi2Se3 topological insulator. ACS Photonics, 2015, 2(9): 1231–1235
CrossRef Google scholar
[90]
Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, Loidl A. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Physical Review Letters, 2017, 119(22): 227202
CrossRef Pubmed Google scholar
[91]
Sahasrabudhe A, Kaib D A S, Reschke S, German R, Koethe T C, Buhot J, Kamenskyi D, Hickey C, Becker P, Tsurkan V, Loidl A, Do S H, Choi K Y, Grüninger M, Winter S M, Wang Z, Valentí R, van Loosdrecht P H M. High-field quantum disordered state in α-RuCl3: spin flips, bound states, and multi-particle continuum. Physical Review B: Condensed Matter and Materials Physics, 2020, 101(14): 140410
CrossRef Google scholar
[92]
LaForge A D, Frenzel A, Pursley B C, Lin T, Liu X, Shi J, Basov D N. Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(12): 125120
CrossRef Google scholar
[93]
Schafgans A, Post K W, Taskin A A, Ando Y, Qi X L, Chapler B C, Basov D N. Landau level spectroscopy of surface states in the topological insulator Bi0.91Sb0.09 via magneto-optics. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195440
CrossRef Google scholar
[94]
Schafgans A A, LaForge A D, Dordevic S V, Qazilbash M M, Padilla W J, Burch K S, Li Z Q, Komiya S, Ando Y, Basov D N. Towards a two-dimensional superconducting state of La2−xSrx-CuO4 in a moderate external magnetic field. Physical Review Letters, 2010, 104(15): 157002
CrossRef Pubmed Google scholar
[95]
Dresselhaus G, Kip A F, Kittel C. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Physical Review, 1955, 98(2): 368–384
CrossRef Google scholar
[96]
Lax B, Mavroides J G. Cyclotron resonance. In: Seitz F, Turnbull D, eds. Solid State Physics, vol. 11. New York: Academic Press, 1960, 261–400
[97]
McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. II. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 38. New York: Academic Press, 1975, 1–53
[98]
Kono J. Cyclotron resonance. In: Kaufmann E N, et al. (eds.) Methods in Materials Research. New York: John Wiley & Sons, 2001, Chap. 9b.2
[99]
Kono J, Miura N. Cyclotron resonance in high magnetic fields. In: Miura N, Herlach F, eds. High Magnetic Fields: Science and Technology, Volume III. Singapore: World Scientific, 2006, 61–90
[100]
Hilton D J, Arikawa T, Kono J. Cyclotron resonance. In: Kaufmann E N, ed. Characterization of Materials, 2nd edition. New York: John Wiley & Sons, Inc., 2012, 1–15
[101]
Wang X, Hilton D J, Reno J L, Mittleman D M, Kono J. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases. Optics Express, 2010, 18(12): 12354–12361
CrossRef Pubmed Google scholar
[102]
Dicke R H. Coherence in spontaneous radiation processes. Physical Review, 1954, 93(1): 99–110
CrossRef Google scholar
[103]
Miura N, Yokoi H, Kono J, Sasaki S. High field cyclotron resonance and the electron effective masses in AlAs. Solid State Communications, 1991, 79(12): 1039–1042
CrossRef Google scholar
[104]
Kono J, Miura N, Takeyama S, Yokoi H, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K, Yamanaka M. Observation of cyclotron resonance in low-mobility semiconductors using pulsed ultra-high magnetic fields. Physica B, Condensed Matter, 1993, 184(1–4): 178–183
CrossRef Google scholar
[105]
Kono J, Takeyama S, Takamasu T, Miura N, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K. High-field cyclotron resonance and valence-band structure in semiconducting diamond. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10917–10925
CrossRef Pubmed Google scholar
[106]
Kono J, Takeyama S, Yokoi H, Miura N, Yamanaka M, Shinohara M, Ikoma K. High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10909–10916
CrossRef Pubmed Google scholar
[107]
Knap W, Contreras S, Alause H, Skierbiszewski C, Camassel J, Dyakonov M, Robert J L, Yang J, Chen Q, Asif Khan M, Sadowski M L, Huant S, Yang F H, Goiran M, Leotin J, Shur M S. Cyclotron resonance and quantum hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface. Applied Physics Letters, 1997, 70(16): 2123–2125
CrossRef Google scholar
[108]
Wang Y, Kaplan R, Ng H K, Doverspike K, Gaskill D K, Ikedo T, Akasaki I, Amono H. Magneto-optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance. Journal of Applied Physics, 1996, 79(10): 8007–8010
CrossRef Google scholar
[109]
Cheng B, Taylor P, Folkes P, Rong C, Armitage N P. Magnetoterahertz response and Faraday rotation from massive dirac fermions in the topological crystalline insulator Pb0.5Sn0.5Te. Physical Review Letters, 2019, 122(9): 097401
CrossRef Pubmed Google scholar
[110]
Jeffries C D. Electron-hole condensation in semiconductors: electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties. Science, 1975, 189(4207): 955–964
CrossRef Pubmed Google scholar
[111]
Zhang Q, Wang Y, Gao W, Long Z, Watson J D, Manfra M J, Belyanin A, Kono J. Stability of high-density two-dimensional excitons against a Mott transition in high magnetic fields probed by coherent terahertz spectroscopy. Physical Review Letters, 2016, 117(20): 207402
CrossRef Pubmed Google scholar
[112]
Li X, Yoshioka K, Zhang Q, Marquez Peraca N, Katsutani F, Gao W, Noe G T II, Watson J D, Manfra M J, Katayama I, Takeda J, Kono J. Observation of terahertz gain in two-dimensional magnetoexcitons. 2020, arXiv:2004.11459
[113]
Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: a review. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661–1690
CrossRef Google scholar
[114]
von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, 45(6): 494–497
CrossRef Google scholar
[115]
Ikebe Y, Morimoto T, Masutomi R, Okamoto T, Aoki H, Shimano R. Optical Hall effect in the integer quantum Hall regime. Physical Review Letters, 2010, 104(25): 256802
CrossRef Pubmed Google scholar
[116]
Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H. Quantum Faraday and Kerr rotations in graphene. Nature Communications, 2013, 4(1): 1841
CrossRef Pubmed Google scholar
[117]
Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D, Applied Physics, 2005, 38(8): R123–R152
CrossRef Google scholar
[118]
Yu S, Dhanasekhar C, Adyam V, Deckoff-Jones S, Man M K L, Madéo J, Wong E L, Harada T, Murali Krishna M B, Dani K M, Talbayev D. Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Physical Review B, 2017, 96(9): 094421
CrossRef Google scholar
[119]
Armitage N P, Wu L. On the matter of topological insulators as magnetoelectrics. SciPost Physics, 2019, 6: 046
[120]
Essin A M, Moore J E, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Physical Review Letters, 2009, 102(14): 146805
CrossRef Pubmed Google scholar
[121]
Maciejko J, Qi X L, Drew H D, Zhang S C. Topological quantization in units of the fine structure constant. Physical Review Letters, 2010, 105(16): 166803
CrossRef Pubmed Google scholar
[122]
Morimoto T, Furusaki A, Nagaosa N. Topological magnetoelectric effects in thin films of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 085113
CrossRef Google scholar
[123]
Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424
CrossRef Google scholar
[124]
Tse W K, MacDonald A H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Physical Review Letters, 2010, 105(5): 057401
CrossRef Pubmed Google scholar
[125]
Tse W K, MacDonald A H. Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(20): 205327
CrossRef Google scholar
[126]
Wang J, Lian B, Qi X L, Zhang S C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 081107
CrossRef Google scholar
[127]
Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters, 2019, 122(20): 206401
CrossRef Pubmed Google scholar
[128]
Wilczek F. Two applications of axion electrodynamics. Physical Review Letters, 1987, 58(18): 1799–1802
CrossRef Pubmed Google scholar
[129]
Hancock J N, van Mechelen J L, Kuzmenko A B, van der Marel D, Brüne C, Novik E G, Astakhov G V, Buhmann H, Molenkamp L W. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Physical Review Letters, 2011, 107(13): 136803
CrossRef Pubmed Google scholar
[130]
Jenkins G S, Sushkov A B, Schmadel D C, Butch N P, Syers P, Paglione J, Drew H D. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(12): 125120
CrossRef Google scholar
[131]
Valdés Aguilar R, Stier A V, Liu W, Bilbro L S, George D K, Bansal N, Wu L, Cerne J, Markelz A G, Oh S, Armitage N P. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Physical Review Letters, 2012, 108(8): 087403
CrossRef Pubmed Google scholar
[132]
Wu L, Tse W K, Brahlek M, Morris C M, Aguilar R V, Koirala N, Oh S, Armitage N P. High-resolution Faraday rotation and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu0.02Bi2Se3. Physical Review Letters, 2015, 115(21): 217602
CrossRef Pubmed Google scholar
[133]
Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Böttcher J, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H, Molenkamp L W. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nature Communications, 2017, 8(1): 15197
CrossRef Pubmed Google scholar
[134]
Li X, Yoshioka K, Xie M, Noe G T, Lee W, Marquez Peraca N, Gao W, Hagiwara T, Handegård Ø S, Nien L W, Nagao T, Kitajima M, Nojiri H, Shih C K, MacDonald A H, Katayama I, Takeda J, Fiete G A, Kono J. Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 Tesla. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(11): 115145
CrossRef Google scholar
[135]
Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature Communications, 2016, 7(1): 12245
CrossRef Pubmed Google scholar
[136]
Morris C M, Valdés Aguilar R, Ghosh A, Koohpayeh S M, Krizan J, Cava R J, Tchernyshyov O, McQueen T M, Armitage N P. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy. Physical Review Letters, 2014, 112(13): 137403
CrossRef Pubmed Google scholar
[137]
Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, Orenstein J. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Physical Review Letters, 2017, 119(22): 227201
CrossRef Pubmed Google scholar
[138]
Wu L, Little A, Aldape E E, Rees D, Thewalt E, Lampen-Kelley P, Banerjee A, Bridges C A, Yan J Q, Boone D, Patankar S, Goldhaber-Gordon D, Mandrus D, Nagler S E, Altman E, Orenstein J. Field evolution of magnons in α-RuCl3 by high-resolution polarized terahertz spectroscopy. Physical Review. B, 2018, 98(9): 094425
CrossRef Google scholar
[139]
Ozel I O, Belvin C A, Baldini E, Kimchi I, Do S, Choi K Y, Gedik N. Magnetic field-dependent low-energy magnon dynamics in α-RuCl3. Physical Review. B, 2019, 100(8): 085108
CrossRef Google scholar
[140]
Shi L, Liu Y Q, Lin T, Zhang M Y, Zhang S J, Wang L, Shi Y G, Dong T, Wang N L. Field-induced magnon excitation and in-gap absorption in the Kitaev candidate RuCl3. Physical Review B: Condensed Matter and Materials Physics, 2018, 98(9): 094414
CrossRef Google scholar
[141]
Yu S, Gao B, Kim J W, Cheong S W, Man M K L, Madéo J, Dani K M, Talbayev D. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Physical Review Letters, 2018, 120(3): 037601
CrossRef Pubmed Google scholar
[142]
Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005
CrossRef Google scholar
[143]
Kockum A F, Miranowicz A, De Liberato S, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(1): 19–40
CrossRef Google scholar
[144]
Hagenmüller D, De Liberato S, Ciuti C. Ultra-strong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235303
CrossRef Google scholar
[145]
Herrmann G. Resonance and high frequency susceptibility in canted antiferromagnetic substances. Journal of Physics and Chemistry of Solids, 1963, 24(5): 597–606
CrossRef Google scholar
[146]
Artoni M, Birman J L. Polaritonsqueezing: theory and proposed experiment. Quantum Optics: Journal of the European Optical Society Part B, 1989, 1(2): 91–97
CrossRef Google scholar
[147]
Schwendimann P, Quattropani A. Nonclassical properties of polariton states. Europhysics Letters, 1992, 17(4): 355–358
CrossRef Google scholar
[148]
Ciuti C, Bastard G, Carusotto I. Quantumvacuum properties of the intersubband cavity polariton field. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(11): 115303
CrossRef Google scholar

Acknowledgements

J. K. acknowledges support from the U.S. Army Research Office (W911NF-17-1-0259), the U.S. National Science Foundation (NSF MRSEC DMR-1720595), the U.S. Department of Energy (DEFG02-06ER46308), and the Robert A. Welch Foundation (C-1509).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2571 KB)

Accesses

Citations

Detail

Sections
Recommended

/