|
|
Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser |
Xiaohui LI1( ), Jiajun PENG1, Ruisheng LIU1,2, Jishu LIU1, Tianci FENG1, Abdul Qyyum1, Cunxiao GAO2( ), Mingyuan XUE2, Jian ZHANG2 |
1. College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China 2. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China |
|
|
Abstract In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.
|
Keywords
Fe3O4
rectangular pulse
dissipative soliton
erbium-doped fiber
nonlinear photonics
|
Corresponding Author(s):
Xiaohui LI,Cunxiao GAO
|
Just Accepted Date: 30 June 2020
Online First Date: 13 July 2020
Issue Date: 21 July 2020
|
|
1 |
B Oktem, C Ülgüdür, F Ö Ilday. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311
https://doi.org/10.1038/nphoton.2010.33
|
2 |
S Kobtsev, S Kukarin, S Smirnov, S Turitsyn, A Latkin. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713
https://doi.org/10.1364/OE.17.020707
pmid: 19997301
|
3 |
M Tang, X Tian, P Shum, S Fu, H Dong, Y Gong. Four-wave mixing assisted self-stable 4 ´10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730
https://doi.org/10.1364/OE.14.001726
pmid: 19503500
|
4 |
J S Liu, X H Li, Y X Guo, A Qyyum, Z J Shi, T C Feng, Y Zhang, C X Jiang, X F Liu. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811
https://doi.org/10.1002/smll.201902811
pmid: 31373758
|
5 |
E J Greer, K Smith. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741
|
6 |
S Cundiff, B Collings, W Knox. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21
https://doi.org/10.1364/OE.1.000012
pmid: 19373374
|
7 |
B C Collings, K Bergman, W H Knox. Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125
https://doi.org/10.1364/OL.23.000123
pmid: 18084433
|
8 |
M Moenster, P Glas, G Steinmeyer, R Iliew, N Lebedev, R Wedell, M Bretschneider. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677
https://doi.org/10.1364/OPEX.13.008671
pmid: 19498898
|
9 |
K Wu, B Chen, X Zhang, S Zhang, C Guo, C Li, P Xiao, J Wang, L Zhou, W Zou, J Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214–229
https://doi.org/10.1016/j.optcom.2017.02.024
|
10 |
T Yang, H Lin, B Jia. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22
https://doi.org/10.1007/s12200-017-0753-1
|
11 |
S Choi, H Jeong, B Hong, F Rotermund, D Yeom. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101
https://doi.org/10.1088/1612-2011/11/1/015101
|
12 |
X Liu, Y Cui, D Han, X Yao, Z Sun. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101
https://doi.org/10.1038/srep09101
pmid: 25765454
|
13 |
M Haiml, R Grange, U Keller. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339
https://doi.org/10.1007/s00340-004-1535-1
|
14 |
S Yamashita, Y Inoue, S Maruyama, Y Murakami, H Yaguchi, M Jablonski, S Y Set. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29(14): 1581–1583
https://doi.org/10.1364/OL.29.001581
pmid: 15309825
|
15 |
H H Liu, K K Chow. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713
https://doi.org/10.1364/OE.22.029708
pmid: 25606901
|
16 |
W Xin, Z B Liu, Q W Sheng, M Feng, L G Huang, P Wang, W S Jiang, F Xing, Y G Liu, J G Tian. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
https://doi.org/10.1364/OE.22.010239
pmid: 24921727
|
17 |
D D Li, J W Zhu, M Jiang, D Li, H Wu, J Han, Z P Sun, Z Y Ren. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203
https://doi.org/10.1007/s00340-019-7312-y
|
18 |
Y R Wang, B T Zhang, H Yang, J Hou, X C Su, Z P Sun, J L He. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931
https://doi.org/10.1109/JLT.2019.2907654
|
19 |
T Chai, X Li, T Feng, P Guo, Y Song, Y Chen, H Zhang. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617–17622
https://doi.org/10.1039/C8NR03068E
pmid: 30204206
|
20 |
P Yan, R Lin, S Ruan, A Liu, H Chen, Y Zheng, S Chen, C Guo, J Hu. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports, 2015, 5(1): 8690
https://doi.org/10.1038/srep08690
pmid: 25732598
|
21 |
D Mao, B Jiang, X Gan, C Ma, Y Chen, C Zhao, H Zhang, J Zheng, J Zhao. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43
https://doi.org/10.1364/PRJ.3.000A43
|
22 |
22.Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35(11): 1800341
https://doi.org/10.1002/ppsc.201800341
|
23 |
Z Hui, W Xu, X Li, P Guo, Y Zhang, J Liu. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051
https://doi.org/10.1039/C9NR00080A
pmid: 30869727
|
24 |
M Wu, X Li, K Wu, D Wu, S Dai, T Xu, Q Nie. All-fiber 2 mm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157
https://doi.org/10.1016/j.yofte.2018.11.032
|
25 |
W Liu, L Pang, H Han, K Bi, M Lei, Z Wei. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9(18): 5806–5811
https://doi.org/10.1039/C7NR00971B
pmid: 28287663
|
26 |
R I Woodward, R C T Howe, G Hu, F Torrisi, M Zhang, T Hasan, E J R Kelleher. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30
https://doi.org/10.1364/PRJ.3.000A30
|
27 |
J Feng, X Li, Z Shi, C Zheng, X Li, D Leng, Y Wang, J Liu, L Zhu. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762
|
28 |
L Kong, Z Qin, G Xie, Z Guo, H Zhang, P Yuan, L Qian. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 mm to 2.7 mm wavelength. Laser Physics Letters, 2016, 13(4): 045801
|
29 |
R Wei, M Wang, Z Zhu, W Lai, P Yan, S Ruan, J Wang, Z Sun, T Hasan. High-power femtosecond pulse generation from an all-fiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208
https://doi.org/10.1109/JPHOT.2020.2979870
|
30 |
C Zhao, H Zhang, X Qi, Y Chen, Z Wang, S C Wen, D Y Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106
https://doi.org/10.1063/1.4767919
|
31 |
J Fang, Z Yang, S long, Z Wu, X Zhao, F Liang, Z Jiang, Z Chen.High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711
https://doi.org/10.1109/JPHOT.2017.2687947
|
32 |
D Mao, X Cui, W Zhang, M Li, T Feng, B Du, H Lu, J Zhao. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Research, 2017, 5(1): 52
https://doi.org/10.1364/PRJ.5.000052
|
33 |
X Bai, C Mou, L Xu, S Wang, S Pu, X Zeng. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701
https://doi.org/10.7567/APEX.9.042701
|
34 |
C T Chan. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3
https://doi.org/10.1007/s12200-020-1022-2
|
35 |
H Li, B Ma. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49
https://doi.org/10.1007/s12200-019-0946-x
|
36 |
G Xing, J Jiang, J Y Ying, W Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190
https://doi.org/10.1364/OE.18.006183
pmid: 20389641
|
37 |
N Li, H Jia, J X Liu, L H Cui, Z X Jia, Z Kang, G S Qin, W P Qin. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102
https://doi.org/10.1088/1612-202X/ab1897
|
38 |
J Yang, J Hu, H Luo, J Li, J Liu, X Li, Y Liu. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 mm. Photonics Research, 2020, 8(1): 70–77
https://doi.org/10.1364/PRJ.8.000070
|
39 |
J S Liu, X H Li, A Qyyum, Y X Guo, T Chai, H Xu, J Jiang. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065–1072
https://doi.org/10.3762/bjnano.10.107
pmid: 31165033
|
40 |
F El-Diasty, H M El-Sayed, F I El-Hosiny, M I M Ismail. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34
https://doi.org/10.1016/j.cossms.2008.09.002
|
41 |
D Y Tang, L M Zhao, B Zhao, A Q Liu. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816
https://doi.org/10.1103/PhysRevA.72.043816
|
42 |
B Guo, Y Yao, J J Tian, Y F Zhao, S Liu, M Li, M R Quan. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704
https://doi.org/10.1109/LPT.2015.2390212
|
43 |
H Zhang, D Tang, L Zhao, X Wu. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530
https://doi.org/10.1364/OE.19.003525
pmid: 21369176
|
44 |
X Li, X Liu, X Hu, L Wang, H Lu, Y Wang, W Zhao. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251
https://doi.org/10.1364/OL.35.003249
pmid: 20890349
|
45 |
W Chang, A Ankiewicz, J M Soto-Crespo, N Akhmediev. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972
https://doi.org/doi.org/10.1364/JOSAB.25.001972
|
46 |
X Wang, Q Xia, B A Gu. A 1.9 mm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183
https://doi.org/10.1016/j.optcom.2018.10.057
|
47 |
E Bravo-Huerta, M Durán-Sánchez, R I Álvarez-Tamayo, H Santiago-Hernández, M Bello-Jiménez, B Posada-Ramírez, B Ibarra-Escamilla, O Pottiez, E A Kuzin. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359
https://doi.org/10.1364/OE.27.012349
pmid: 31052776
|
48 |
S K Wang, Q Y Ning, A P Luo, Z B Lin, Z C Luo, W C Xu. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express, 2013, 21(2): 2402–2407
https://doi.org/10.1364/OE.21.002402
pmid: 23389220
|
49 |
Z C Luo, W J Cao, Z B Lin, Z R Cai, A P Luo, W C Xu. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779
https://doi.org/10.1364/OL.37.004777
pmid: 23164910
|
50 |
L Liu, J H Liao, Q Y Ning, W Yu, A P Luo, S H Xu, Z C Luo, Z M Yang, W C Xu. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092
https://doi.org/10.1364/OE.21.027087
pmid: 24216932
|
51 |
X Li, Y Wang, W Zhao, X Liu, Y Wang, Y H Tsang, W Zhang, X Hu, Z Yang, C Gao, C Li, D Shen. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507
https://doi.org/10.1109/JLT.2012.2201210
|
52 |
Y Jeong, L A Vazquez-Zuniga, S Lee, Y Kwon. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592
https://doi.org/10.1016/j.yofte.2014.07.004
|
53 |
X Li, Y Wang, W Zhang, W Zhao. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103
https://doi.org/10.1088/1612-2011/11/7/075103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|