Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2020, Vol. 13 Issue (2) : 149-155     https://doi.org/10.1007/s12200-020-1057-4
RESEARCH ARTICLE
Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser
Xiaohui LI1(), Jiajun PENG1, Ruisheng LIU1,2, Jishu LIU1, Tianci FENG1, Abdul Qyyum1, Cunxiao GAO2(), Mingyuan XUE2, Jian ZHANG2
1. College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
2. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
Download: PDF(947 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.

Keywords Fe3O4      rectangular pulse      dissipative soliton      erbium-doped fiber      nonlinear photonics     
Corresponding Author(s): Xiaohui LI,Cunxiao GAO   
Just Accepted Date: 30 June 2020   Online First Date: 13 July 2020    Issue Date: 21 July 2020
 Cite this article:   
Xiaohui LI,Jiajun PENG,Ruisheng LIU, et al. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser[J]. Front. Optoelectron., 2020, 13(2): 149-155.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-020-1057-4
http://journal.hep.com.cn/foe/EN/Y2020/V13/I2/149
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaohui LI
Jiajun PENG
Ruisheng LIU
Jishu LIU
Tianci FENG
Abdul Qyyum
Cunxiao GAO
Mingyuan XUE
Jian ZHANG
Fig.1  SEM image of Fe3O4
Fig.2  Nonlinear transmission of Fe3O4-SAs
Fig.3  Fiber laser with Fe3O4 as mode-locker
Fig.4  (a) Output power as function of the pump power. (b) Pulse train at pump power of 190 mW, the fundamental repetition frequency is 7.69 MHz at pump power of 190 mW. The interval of two pulses is ~130 ns
Fig.5  (a) Output spectrum at the pump power of 190 mW. (b) Evolution of spectrum with pump power from 190 to 240 mW. (c) Single pulse at the pump power of 190 mW. (d) Evolution of single pulse with pump power from 190 to 240 mW. (e) RF-spectrum of single frequency at the pump power of 190 mW ((e) is a magnified interception of (f)). (f) RF of frequency at the pump of 190 mW. (g) Evolutions of frequency and output power with pump power
1 B Oktem, C Ülgüdür, F Ö Ilday. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311
https://doi.org/10.1038/nphoton.2010.33
2 S Kobtsev, S Kukarin, S Smirnov, S Turitsyn, A Latkin. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713
https://doi.org/10.1364/OE.17.020707 pmid: 19997301
3 M Tang, X Tian, P Shum, S Fu, H Dong, Y Gong. Four-wave mixing assisted self-stable 4 ´10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730
https://doi.org/10.1364/OE.14.001726 pmid: 19503500
4 J S Liu, X H Li, Y X Guo, A Qyyum, Z J Shi, T C Feng, Y Zhang, C X Jiang, X F Liu. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811
https://doi.org/10.1002/smll.201902811 pmid: 31373758
5 E J Greer, K Smith. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741
6 S Cundiff, B Collings, W Knox. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21
https://doi.org/10.1364/OE.1.000012 pmid: 19373374
7 B C Collings, K Bergman, W H Knox. Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125
https://doi.org/10.1364/OL.23.000123 pmid: 18084433
8 M Moenster, P Glas, G Steinmeyer, R Iliew, N Lebedev, R Wedell, M Bretschneider. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677
https://doi.org/10.1364/OPEX.13.008671 pmid: 19498898
9 K Wu, B Chen, X Zhang, S Zhang, C Guo, C Li, P Xiao, J Wang, L Zhou, W Zou, J Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214–229
https://doi.org/10.1016/j.optcom.2017.02.024
10 T Yang, H Lin, B Jia. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22
https://doi.org/10.1007/s12200-017-0753-1
11 S Choi, H Jeong, B Hong, F Rotermund, D Yeom. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101
https://doi.org/10.1088/1612-2011/11/1/015101
12 X Liu, Y Cui, D Han, X Yao, Z Sun. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101
https://doi.org/10.1038/srep09101 pmid: 25765454
13 M Haiml, R Grange, U Keller. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339
https://doi.org/10.1007/s00340-004-1535-1
14 S Yamashita, Y Inoue, S Maruyama, Y Murakami, H Yaguchi, M Jablonski, S Y Set. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29(14): 1581–1583
https://doi.org/10.1364/OL.29.001581 pmid: 15309825
15 H H Liu, K K Chow. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713
https://doi.org/10.1364/OE.22.029708 pmid: 25606901
16 W Xin, Z B Liu, Q W Sheng, M Feng, L G Huang, P Wang, W S Jiang, F Xing, Y G Liu, J G Tian. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
https://doi.org/10.1364/OE.22.010239 pmid: 24921727
17 D D Li, J W Zhu, M Jiang, D Li, H Wu, J Han, Z P Sun, Z Y Ren. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203
https://doi.org/10.1007/s00340-019-7312-y
18 Y R Wang, B T Zhang, H Yang, J Hou, X C Su, Z P Sun, J L He. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931
https://doi.org/10.1109/JLT.2019.2907654
19 T Chai, X Li, T Feng, P Guo, Y Song, Y Chen, H Zhang. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617–17622
https://doi.org/10.1039/C8NR03068E pmid: 30204206
20 P Yan, R Lin, S Ruan, A Liu, H Chen, Y Zheng, S Chen, C Guo, J Hu. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports, 2015, 5(1): 8690
https://doi.org/10.1038/srep08690 pmid: 25732598
21 D Mao, B Jiang, X Gan, C Ma, Y Chen, C Zhao, H Zhang, J Zheng, J Zhao. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43
https://doi.org/10.1364/PRJ.3.000A43
22 22.Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35(11): 1800341
https://doi.org/10.1002/ppsc.201800341
23 Z Hui, W Xu, X Li, P Guo, Y Zhang, J Liu. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051
https://doi.org/10.1039/C9NR00080A pmid: 30869727
24 M Wu, X Li, K Wu, D Wu, S Dai, T Xu, Q Nie. All-fiber 2 mm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157
https://doi.org/10.1016/j.yofte.2018.11.032
25 W Liu, L Pang, H Han, K Bi, M Lei, Z Wei. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9(18): 5806–5811
https://doi.org/10.1039/C7NR00971B pmid: 28287663
26 R I Woodward, R C T Howe, G Hu, F Torrisi, M Zhang, T Hasan, E J R Kelleher. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30
https://doi.org/10.1364/PRJ.3.000A30
27 J Feng, X Li, Z Shi, C Zheng, X Li, D Leng, Y Wang, J Liu, L Zhu. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762
28 L Kong, Z Qin, G Xie, Z Guo, H Zhang, P Yuan, L Qian. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 mm to 2.7 mm wavelength. Laser Physics Letters, 2016, 13(4): 045801
29 R Wei, M Wang, Z Zhu, W Lai, P Yan, S Ruan, J Wang, Z Sun, T Hasan. High-power femtosecond pulse generation from an all-fiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208
https://doi.org/10.1109/JPHOT.2020.2979870
30 C Zhao, H Zhang, X Qi, Y Chen, Z Wang, S C Wen, D Y Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106
https://doi.org/10.1063/1.4767919
31 J Fang, Z Yang, S long, Z Wu, X Zhao, F Liang, Z Jiang, Z Chen.High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711
https://doi.org/10.1109/JPHOT.2017.2687947
32 D Mao, X Cui, W Zhang, M Li, T Feng, B Du, H Lu, J Zhao. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Research, 2017, 5(1): 52
https://doi.org/10.1364/PRJ.5.000052
33 X Bai, C Mou, L Xu, S Wang, S Pu, X Zeng. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701
https://doi.org/10.7567/APEX.9.042701
34 C T Chan. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3
https://doi.org/10.1007/s12200-020-1022-2
35 H Li, B Ma. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49
https://doi.org/10.1007/s12200-019-0946-x
36 G Xing, J Jiang, J Y Ying, W Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190
https://doi.org/10.1364/OE.18.006183 pmid: 20389641
37 N Li, H Jia, J X Liu, L H Cui, Z X Jia, Z Kang, G S Qin, W P Qin. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102
https://doi.org/10.1088/1612-202X/ab1897
38 J Yang, J Hu, H Luo, J Li, J Liu, X Li, Y Liu. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 mm. Photonics Research, 2020, 8(1): 70–77
https://doi.org/10.1364/PRJ.8.000070
39 J S Liu, X H Li, A Qyyum, Y X Guo, T Chai, H Xu, J Jiang. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065–1072
https://doi.org/10.3762/bjnano.10.107 pmid: 31165033
40 F El-Diasty, H M El-Sayed, F I El-Hosiny, M I M Ismail. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34
https://doi.org/10.1016/j.cossms.2008.09.002
41 D Y Tang, L M Zhao, B Zhao, A Q Liu. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816
https://doi.org/10.1103/PhysRevA.72.043816
42 B Guo, Y Yao, J J Tian, Y F Zhao, S Liu, M Li, M R Quan. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704
https://doi.org/10.1109/LPT.2015.2390212
43 H Zhang, D Tang, L Zhao, X Wu. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530
https://doi.org/10.1364/OE.19.003525 pmid: 21369176
44 X Li, X Liu, X Hu, L Wang, H Lu, Y Wang, W Zhao. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251
https://doi.org/10.1364/OL.35.003249 pmid: 20890349
45 W Chang, A Ankiewicz, J M Soto-Crespo, N Akhmediev. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972
https://doi.org/doi.org/10.1364/JOSAB.25.001972
46 X Wang, Q Xia, B A Gu. A 1.9 mm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183
https://doi.org/10.1016/j.optcom.2018.10.057
47 E Bravo-Huerta, M Durán-Sánchez, R I Álvarez-Tamayo, H Santiago-Hernández, M Bello-Jiménez, B Posada-Ramírez, B Ibarra-Escamilla, O Pottiez, E A Kuzin. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359
https://doi.org/10.1364/OE.27.012349 pmid: 31052776
48 S K Wang, Q Y Ning, A P Luo, Z B Lin, Z C Luo, W C Xu. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express, 2013, 21(2): 2402–2407
https://doi.org/10.1364/OE.21.002402 pmid: 23389220
49 Z C Luo, W J Cao, Z B Lin, Z R Cai, A P Luo, W C Xu. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779
https://doi.org/10.1364/OL.37.004777 pmid: 23164910
50 L Liu, J H Liao, Q Y Ning, W Yu, A P Luo, S H Xu, Z C Luo, Z M Yang, W C Xu. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092
https://doi.org/10.1364/OE.21.027087 pmid: 24216932
51 X Li, Y Wang, W Zhao, X Liu, Y Wang, Y H Tsang, W Zhang, X Hu, Z Yang, C Gao, C Li, D Shen. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507
https://doi.org/10.1109/JLT.2012.2201210
52 Y Jeong, L A Vazquez-Zuniga, S Lee, Y Kwon. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592
https://doi.org/10.1016/j.yofte.2014.07.004
53 X Li, Y Wang, W Zhang, W Zhao. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103
https://doi.org/10.1088/1612-2011/11/7/075103
Related articles from Frontiers Journals
[1] Xu ZHANG, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Ziheng XU, Wengang WANG. High-power EDFA applied in distributed optical fiber Raman temperature sensor system[J]. Front Optoelec Chin, 2009, 2(2): 210-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed