Composition engineering to obtain efficient hybrid perovskite light-emitting diodes

Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI

PDF(1380 KB)
PDF(1380 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 282-290. DOI: 10.1007/s12200-020-1046-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Composition engineering to obtain efficient hybrid perovskite light-emitting diodes

Author information +
History +

Abstract

Metal halide perovskites have received considerable attention in the field of electroluminescence, and the external quantum efficiency of perovskite light-emitting diodes has exceeded 20%. CH3NH3PbBr3 has been intensely investigated as an emitting layer in perovskite light-emitting diodes. However, perovskite films comprising CH3NH3PbBr3 often exhibit low surface coverage and poor crystallinity, leading to high current leakage, severe nonradiative recombination, and limited device performance. Herein, we demonstrate a rationale for composition engineering to obtain high-quality perovskite films. We first reduce pinholes by adding excess CH3NH3Br to the actual CH3NH3PbBr3 films, and we then add CsBr to improve the crystalline quality and to passivate nonradiative defects. As a result, the (CH3NH3)1−xCsxPbBr3 based perovskite light-emitting diodes exhibit significantly improved external quantum and power efficiencies of 6.97% and 25.18 lm/W, respectively, representing an improvement in performance dozens of times greater than that of pristine CH3NH3PbBr3-based perovskite light-emitting diodes. Our study demonstrates that composition engineering is an effective strategy for enhancing the device performance of perovskite light-emitting diodes.

Graphical abstract

Keywords

perovskite / light-emitting diode (LED) / composition engineering / ion doping

Cite this article

Download citation ▾
Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Front. Optoelectron., 2020, 13(3): 282‒290 https://doi.org/10.1007/s12200-020-1046-7

References

[1]
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef Pubmed Google scholar
[2]
Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167
CrossRef Pubmed Google scholar
[3]
Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
CrossRef Pubmed Google scholar
[4]
Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
CrossRef Pubmed Google scholar
[5]
Wei Z, Perumal A, Su R, Sushant S, Xing J, Zhang Q, Tan S T, Demir H V, Xiong Q. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8(42): 18021–18026
CrossRef Pubmed Google scholar
[6]
Wei Z, Xing J. The rise of perovskite light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 3035–3042
CrossRef Pubmed Google scholar
[7]
Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316
CrossRef Pubmed Google scholar
[8]
Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534
CrossRef Pubmed Google scholar
[9]
Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
CrossRef Google scholar
[10]
Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11(2): 108–115
CrossRef Google scholar
[11]
Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8(1): 15640
CrossRef Pubmed Google scholar
[12]
Wu Y, Wei C, Li X, Li Y, Qiu S, Shen W, Cai B, Sun Z, Yang D, Deng Z, Zeng H. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Letters, 2018, 3(9): 2030–2037
CrossRef Google scholar
[13]
Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9(1): 3541
CrossRef Pubmed Google scholar
[14]
Lu J, Feng W, Mei G, Sun J, Yan C, Zhang D, Lin K, Wu D, Wang K, Wei Z. Ultrathin PEDOT:PSS enables colorful and efficient perovskite light-emitting diodes. Advanced Science, 2020, 7(11): 2000689
CrossRef Pubmed Google scholar
[15]
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
CrossRef Pubmed Google scholar
[16]
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681–687
CrossRef Google scholar
[17]
Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14(4): 215–218
CrossRef Google scholar
[18]
Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
CrossRef Pubmed Google scholar
[19]
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
CrossRef Google scholar
[20]
Meredith P, Armin A. LED technology breaks performance barrier. Nature, 2018, 562(7726): 197–198
CrossRef Pubmed Google scholar
[21]
Service R F. Perovskite LEDs begin to shine. Science, 2019, 364(6444): 918
CrossRef Pubmed Google scholar
[22]
Quan L N, García de Arquer F P, Sabatini R P, Sargent E H. Perovskites for light emission. Advanced Materials, 2018, 30(45): 1801996
CrossRef Pubmed Google scholar
[23]
Xie L, Song P, Shen L, Lu J, Liu K, Lin K, Feng W, Tian C, Wei Z. Revealing the compositional effect on the intrinsic long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8(16): 7653–7658
CrossRef Google scholar
[24]
Kanwat A, Choi W C, Seth S, Jang J. Doping and photon induced defect healing of hybrid perovskite thin films: an approach towards efficient light emitting diodes. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2019, 5(5): 666–673
CrossRef Google scholar
[25]
Xu Z, Liu Z, Li N, Tang G, Zheng G, Zhu C, Chen Y, Wang L, Huang Y, Li L, Zhou N, Hong J, Chen Q, Zhou H. A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Advanced Materials, 2019, 31(24): 1900390
CrossRef Pubmed Google scholar
[26]
Si J, Liu Y, Wang N, Xu M, Li J, He H, Wang J, Jin Y. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10(4): 1329–1335
CrossRef Google scholar
[27]
Yang X, Chu Z, Meng J, Yin Z, Zhang X, Deng J, You J. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite based light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 2892–2897
CrossRef Pubmed Google scholar
[28]
Prakasam V, Di Giacomo F, Abbel R, Tordera D, Sessolo M, Gelinck G, Bolink H J. Efficient perovskite light-emitting diodes: Effect of composition, morphology, and transport layers. ACS Applied Materials & Interfaces, 2018, 10(48): 41586–41591
CrossRef Pubmed Google scholar
[29]
Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend R H, Sadhanala A, Ogale S. High quality hybrid perovskite semiconductor thin films with remarkably enhanced luminescence and defect suppression via quaternary alkyl ammonium salt based treatment. Advanced Materials Interfaces, 2017, 4(19): 1700562
CrossRef Google scholar
[30]
Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. Journal of the American Chemical Society, 2017, 139(32): 11117–11124
CrossRef Pubmed Google scholar
[31]
Xie L, Lin K, Lu J, Feng W, Song P, Yan C, Liu K, Shen L, Tian C, Wei Z. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. Journal of the American Chemical Society, 2019, 141(51): 20537–20546
CrossRef Pubmed Google scholar
[32]
Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
CrossRef Pubmed Google scholar

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51802102, 21805101, and 51902110), Natural Science Foundation of Fujian Province (No. 2019J01057), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY607), and Scientific Research Funds of Huaqiao University (Nos. 16BS201, 17BS409, and 19BS105).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1380 KB)

Accesses

Citations

Detail

Sections
Recommended

/