Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells

Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU

PDF(1093 KB)
PDF(1093 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 265-271. DOI: 10.1007/s12200-020-1041-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells

Author information +
History +

Abstract

Cesium-based inorganic perovskite solar cells (PSCs) are paid more attention because of their potential thermal stability. However, prevalent salt-doped 2,2′,7,7′-tetrakis(N,N-dipmethoxyphenylamine)9,9′-spirobifluorene (Spiro-OMeTAD) as hole-transport materials (HTMs) for a high-efficiency inorganic device has an unfortunate defective thermal stability. In this study, we apply poly(3-hexylthiophene-2,5-diyl) (P3HT) as the HTM and design all-inorganic PSCs with an indium tin oxide (ITO)/SnO2/LiF/CsPbI3xBrx/P3HT/Au structure. As a result, the CsPbI3xBrx PSCs achieve an excellent performance of 15.84%. The P3HT HTM-based device exhibits good photo-stability, maintaining ~80% of their initial power conversion efficiency over 280 h under one Sun irradiation. In addition, they also show better thermal stability compared with the traditional HTM Spiro-OMeTAD.

Graphical abstract

Keywords

inorganic perovskite solar cell (PSC) / hole-transport material (HTM) / stability

Cite this article

Download citation ▾
Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells. Front. Optoelectron., 2020, 13(3): 265‒271 https://doi.org/10.1007/s12200-020-1041-z

References

[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of Applied Chemical Science, 2009, 131(17): 6050–6051
CrossRef Pubmed Google scholar
[2]
National Renewable Energy Laboratory (NREL). Best Cell Efficiencies, available at the website of nrel.gov/pv/cell-efficiency (accessed: January 2019)
[3]
Im J H, Jang I H, Pellet N, Grätzel M, Park N G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 2014, 9(11): 927–932
CrossRef Pubmed Google scholar
[4]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
CrossRef Pubmed Google scholar
[5]
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
CrossRef Pubmed Google scholar
[6]
D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(4): 3586
CrossRef Pubmed Google scholar
[7]
Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S, Zhu X Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 2016, 353(6306): 1409–1413
CrossRef Pubmed Google scholar
[8]
Svane K L, Forse A C, Grey C P, Kieslich G, Cheetham A K, Walsh A, Butler K T. How strong is the hydrogen bond in hybrid perovskites? Journal of Physical Chemistry Letters, 2017, 8(24): 6154–6159
CrossRef Pubmed Google scholar
[9]
Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S. Inorganic perovskite solar cells: a rapidly growing field. Solar RRL, 2018, 2(2): 1700188
CrossRef Google scholar
[10]
Sim K M, Swarnkar A, Nag A, Chung D S. Phase stabilized α-CsPbI3 perovskite nanocrystals for photodiode applications. Laser & Photonics Reviews, 2018, 12(1): 1700209
[11]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
CrossRef Pubmed Google scholar
[12]
Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225
CrossRef Pubmed Google scholar
[13]
Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L, Wang X, Yang Y, Gao X, Qi Y, Grätzel M, Zhao Y. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies>18%. Science, 2019, 365(6453): 591–595
CrossRef Google scholar
[14]
Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nature Communications, 2018, 9(1): 4544
CrossRef Pubmed Google scholar
[15]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. Cesium lead halide perovskites with improved stability for tandem solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 746–751
CrossRef Pubmed Google scholar
[16]
Wang Y, Zhang T, Kan M, Zhao Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. Journal of the American Chemical Society, 2018, 140(39): 12345–12348
CrossRef Pubmed Google scholar
[17]
Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q, Hayase S. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angewandte Chemie International Edition, 2018, 130(39): 12927–12931
CrossRef Google scholar
[18]
Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Advanced Energy Materials, 2018, 8(30): 1802060
CrossRef Google scholar
[19]
Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
CrossRef Pubmed Google scholar
[20]
Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S F. Graded bandgap CsPbI2+xBr1-x, perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2(8): 1500–1510
CrossRef Google scholar
[21]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
CrossRef Pubmed Google scholar
[22]
Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science, 2014, 7(9): 2963–2967
CrossRef Google scholar
[23]
Franckevičius M, Mishra A, Kreuzer F, Luo J, Zakeeruddin S M, Gratzel M. A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells. Materials Horizons, 2015, 2(6): 613–618
CrossRef Google scholar
[24]
Liu Y, Chen Q, Duan H S, Zhou H, Yang Y, Chen H, Luo S, Song T B, Dou L, Hong Z, Yang Y. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11940–11947
CrossRef Google scholar
[25]
Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515
CrossRef Pubmed Google scholar
[26]
Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X, You J. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Advanced Materials, 2019, 31(49): e1905143
CrossRef Pubmed Google scholar
[27]
Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5(1): 5784
CrossRef Pubmed Google scholar
[28]
Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393
CrossRef Pubmed Google scholar
[29]
Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13(7): 460–466
CrossRef Google scholar
[30]
Leijtens T, Ding I K, Giovenzana T, Bloking J T, McGehee M D, Sellinger A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano, 2012, 6(2): 1455–1462
CrossRef Pubmed Google scholar
[31]
Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15(7): 2572–2579
CrossRef Pubmed Google scholar
[32]
Tiep N H, Ku Z L, Fan H J. Recent advances in improving the stability of perovskite solar cells. Advanced Energy Materials, 2016, 6(3): 1501420
CrossRef Google scholar

Acknowledgements

This work was supported by the Beijing Municipal Science and Technology Commission (Nos. Z181100004718005 and Z181100005118002).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1093 KB)

Accesses

Citations

Detail

Sections
Recommended

/