Research development on fabrication and optical properties of nonlinear photonic crystals
Huangjia LI, Boqin MA
Research development on fabrication and optical properties of nonlinear photonic crystals
Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.
quasi-phase matching (QPM) / nonlinear diffraction (ND) / superlattice / nonlinear photonic crystal (NPC) / reciprocal lattice vector (RLV)
[1] |
Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
CrossRef
Google scholar
|
[2] |
Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
CrossRef
Google scholar
|
[3] |
Zhu S, Zhu Y, Qin Y, Wang H, Ge C, Ming N. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755
CrossRef
Google scholar
|
[4] |
Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
CrossRef
Google scholar
|
[5] |
Berger V. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
CrossRef
Google scholar
|
[6] |
Broderick N G, Ross G W, Offerhaus H L, Richardson D J, Hanna D C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84(19): 4345–4348
CrossRef
Pubmed
Google scholar
|
[7] |
Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters, 2004, 85(3): 375–377
CrossRef
Google scholar
|
[8] |
Saltiel S M, Neshev D N, Krolikowski W, Arie A, Kivshar Y S. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2
|
[9] |
Sheng Y, Best A, Butt H J, Krolikowski W, Arie A, Koynov K. Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. Optics Express, 2010, 18(16): 16539–16545
CrossRef
Pubmed
Google scholar
|
[10] |
Li H, Mu S, Xu P, Zhong M, Chen C, Hu X, Cui W, Zhu S. Multicolor Čerenkov conical beams generation by cascaded-c(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters, 2012, 100(10): 101101
CrossRef
Google scholar
|
[11] |
Ma B, Kafka K, Chowdhury E. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters, 2017, 15(5): 051901
CrossRef
Google scholar
|
[12] |
Liu S, Switkowski K, Chen X, Xu T, Krolikowski W, Sheng Y. Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express, 2018, 26(7): 8628–8633
CrossRef
Pubmed
Google scholar
|
[13] |
Sheng Y, Wang W, Shiloh R, Roppo V, Kong Y, Arie A, Krolikowski W. Čerenkov third-harmonic generation in c(2) nonlinear photonic crystal. Applied Physics Letters, 2011, 98(24): 241114
CrossRef
Google scholar
|
[14] |
Yao J, Li G, Xu J, Zhang G. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics, 1999, 16(4): 289–294
|
[15] |
Thomas J, Hilbert V, Geiss R, Pertsch T, Tünnermann A, Nolte S. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews, 2013, 7(3): L17–L20
CrossRef
Google scholar
|
[16] |
Rosenman G, Urenski P, Agronin A, Rosenwaks Y, Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters, 2003, 82(1): 103–105
CrossRef
Google scholar
|
[17] |
Yamada M, Kishima K. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters, 1991, 27(10): 828–829
CrossRef
Google scholar
|
[18] |
Wei D, Zhu Y, Zhong W, Cui G, Wang H, He Y, Zhang Y, Lu Y, Xiao M. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 2017, 110(26): 261104
CrossRef
Google scholar
|
[19] |
Magel G A, Fejer M M, Byer R L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters, 1990, 56(2): 108–110
CrossRef
Google scholar
|
[20] |
Xu T, Lu D, Yu H, Zhang H, Zhang Y, Wang J. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters, 2016, 108(5): 051907
CrossRef
Google scholar
|
[21] |
Leng H. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Dissertation for the Doctoral Degree. Nanjing: Nanjing University, 2014, 77–79
|
[22] |
Fejer M M. Nonlinear optical frequency conversion. Physics Today, 1994, 47(5): 25–32
CrossRef
Google scholar
|
[23] |
Freund I. Nonlinear diffraction. Physical Review Letters, 1968, 21(19): 1404–1406
CrossRef
Google scholar
|
[24] |
Kalinowski K, Roedig P, Sheng Y, Ayoub M, Imbrock J, Denz C, Krolikowski W. Enhanced Čerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters, 2012, 37(11): 1832–1834
CrossRef
Pubmed
Google scholar
|
[25] |
Vyunishev A M, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Y. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39(14): 4231–4234
CrossRef
Pubmed
Google scholar
|
[26] |
Wang X, Zhao X, Zheng Y, Chen X. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics, 2017, 56(3): 750–754
CrossRef
Pubmed
Google scholar
|
[27] |
Miller G D, Batchko R G, Tulloch W M, Weise D R, Fejer M M, Byer R L. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters, 1997, 22(24): 1834–1836
CrossRef
Pubmed
Google scholar
|
[28] |
Saltiel S M, Neshev D N, Krolikowski W, Arie A, Bang O, Kivshar Y S. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters, 2009, 34(6): 848–850
CrossRef
Pubmed
Google scholar
|
[29] |
Liu H, Li J, Zhao X, Zheng Y, Chen X. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express, 2016, 24(14): 15666–15671
CrossRef
Pubmed
Google scholar
|
[30] |
Li H, Fan Y, Xu P, Zhu S, Lu P, Gao Z, Wang H, Zhu Y, Ming N, He J L. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96(12): 7756–7758
CrossRef
Google scholar
|
[31] |
Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B, Li Z. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications, 2014, 3(7): e189
CrossRef
Google scholar
|
[32] |
Wang W, Niu X, Zhou C. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals, 2014, 43(5): 1252–1256
|
[33] |
Gu B, Dong B, Zhang Y, Yang G. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters, 1999, 75(15): 2175–2177
CrossRef
Google scholar
|
[34] |
Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180–184
CrossRef
Google scholar
|
[35] |
Reyes Gómez F, Porras-Montenegro N, Oliveira O N Jr, Mejía-Salazar J R. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega, 2018, 3(12): 17922–17927
CrossRef
Pubmed
Google scholar
|
[36] |
Gómez F R, Porras-Montenegro N, Oliveira O N, Mejía-Salazar J R. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B, 2018, 98(7): 075406
CrossRef
Google scholar
|
[37] |
Gómez F R, Mejía-Salazar J R. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters, 2015, 40(21): 5034–5037
CrossRef
Pubmed
Google scholar
|
[38] |
Robles-Uriza A X, Gómez F R, Mejía-Salazar J R. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures, 2016, 97: 110–115
CrossRef
Google scholar
|
[39] |
Gómez F R, Mejía-Salazar J R, Oliveira O N, Porras-Montenegro N. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B, 2017, 96(7): 075429
CrossRef
Google scholar
|
[40] |
Kasimov D, Arie A, Winebrand E, Rosenman G, Bruner A, Shaier P, Eger D. Annular symmetry nonlinear frequency converters. Optics Express, 2006, 14(20): 9371–9376
CrossRef
Pubmed
Google scholar
|
[41] |
Qin Y Q, Zhang C, Zhu Y Y, Hu X P, Zhao G. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters, 2008, 100(6): 063902
CrossRef
Pubmed
Google scholar
|
[42] |
Chen B, Zhang C, Liu R, Li Z. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters, 2014, 105(15): 151106
CrossRef
Google scholar
|
[43] |
Ma B, Wang T, Sheng Y, Ni P, Wang Y, Cheng B, Zhang D. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters, 2005, 87(25): 251103
CrossRef
Google scholar
|
[44] |
Ma B, Ren M, Ma D, Li Z. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics, 2013, 111(2): 183–187
CrossRef
Google scholar
|
[45] |
Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters, 2008, 100(16): 163904
CrossRef
Pubmed
Google scholar
|
[46] |
Ni P, Ma B, Wang X, Cheng B, Zhang D. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters, 2003, 82(24): 4230–4232
CrossRef
Google scholar
|
[47] |
Peng L, Hsu C, Ng J, Kung A. Wavelength tunability of second-harmonic generation from two-dimensional c(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters, 2004, 84(17): 3250–3252
CrossRef
Google scholar
|
[48] |
Ni P, Ma B, Feng S, Cheng B, Zhang D. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications, 2004, 233(1–3): 199–203
CrossRef
Google scholar
|
[49] |
Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465–1472
CrossRef
Google scholar
|
[50] |
Wang T, Ma B, Sheng Y, Ni P, Cheng B, Zhang D. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications, 2005, 252(4–6): 397–401
CrossRef
Google scholar
|
[51] |
Sheng Y, Koynov K, Zhang D. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282(17): 3602–3606
CrossRef
Google scholar
|
[52] |
Hou B, Xu G, Wen W, Wong G K. Diffraction by an optical fractal grating. Applied Physics Letters, 2004, 85(25): 6125–6127
CrossRef
Google scholar
|
[53] |
Park H, Camper A, Kafka K, Ma B, Lai Y H, Blaga C, Agostini P, DiMauro L F, Chowdhury E. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters, 2017, 42(19): 4020–4023
CrossRef
Pubmed
Google scholar
|
[54] |
Ma B, Li H. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers, 2019, 46(2): 0208001
CrossRef
Google scholar
|
[55] |
Mateos L, Molina P, Galisteo J, López C, Bausá L E, Ramírez M O. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20(28): 29940–29948
CrossRef
Pubmed
Google scholar
|
[56] |
Wang W, Sheng Y, Kong Y, Arie A, Krolikowski W. Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters, 2010, 35(22): 3790–3792
CrossRef
Pubmed
Google scholar
|
[57] |
Saltiel S M, Neshev D N, Krolikowski W, Voloch-Bloch N, Arie A, Bang O, Kivshar Y S. Nonlinear diffraction from a virtual beam. Physical Review Letters, 2010, 104(8): 083902
CrossRef
Pubmed
Google scholar
|
[58] |
Vyunishev A M, Arkhipkin V G, Baturin I S, Akhmatkhanov A R, Shur V Y, Chirkin A S. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a c(2) photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15(4): 045401
CrossRef
Google scholar
|
[59] |
Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
CrossRef
Pubmed
Google scholar
|
[60] |
Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, Zhang Y, Wu D, Hu Y, Li J, Zhu S, Xiao M. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596–600
CrossRef
Google scholar
|
[61] |
Xu T, Switkowski K, Chen X, Liu S, Koynov K, Yu H, Zhang H, Wang J, Sheng Y, Krolikowski W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12(10): 591–595
CrossRef
Google scholar
|
[62] |
Zhang J, Zhao X, Zheng Y, Li H, Chen X. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express, 2018, 26(12): 15675–15682
CrossRef
Pubmed
Google scholar
|
[63] |
Powers P E, Kulp T J, Bisson S E. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters, 1998, 23(3): 159–161
CrossRef
Pubmed
Google scholar
|
[64] |
Sasaki Y, Avetisyan Y, Yokoyama H, Ito H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters, 2005, 30(21): 2927–2929
CrossRef
Pubmed
Google scholar
|
[65] |
Shapira A, Naor L, Arie A. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin, 2015, 60(16): 1403–1415
CrossRef
Google scholar
|
[66] |
Tokura A, Asobe M, Enbutsu K, Yoshihara T, Hashida S N, Takenouchi H. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel), 2013, 13(8): 9999–10013
CrossRef
Pubmed
Google scholar
|
[67] |
Myers L E, Miller G D, Eckardt R C, Fejer M M, Byer R L, Bosenberg W R. Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters, 1995, 20(1): 52–54
CrossRef
Pubmed
Google scholar
|
[68] |
Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663–1672
CrossRef
Google scholar
|
[69] |
Burr K C, Tang C L, Arbore M A, Fejer M M. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters, 1997, 70(25): 3341–3343
CrossRef
Google scholar
|
[70] |
Batchko R G, Weise D R, Plettner T, Miller G D, Fejer M M, Byer R L. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters, 1998, 23(3): 168–170
CrossRef
Pubmed
Google scholar
|
[71] |
Wang T D, Lin S T, Lin Y Y, Chiang A C, Huang Y C. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express, 2008, 16(9): 6471–6478
CrossRef
Pubmed
Google scholar
|
[72] |
Liu H, Zhao X, Li H, Zheng Y, Chen X. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters, 2018, 43(14): 3236–3239
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |