Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2020, Vol. 13 Issue (1) : 35-49     https://doi.org/10.1007/s12200-019-0946-x
REVIEW ARTICLE
Research development on fabrication and optical properties of nonlinear photonic crystals
Huangjia LI, Boqin MA()
School of Data Science and Media Intelligence, Communication University of China, Beijing 100024, China
Download: PDF(4681 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.

Keywords quasi-phase matching (QPM)      nonlinear diffraction (ND)      superlattice      nonlinear photonic crystal (NPC)      reciprocal lattice vector (RLV)     
Corresponding Authors: Boqin MA   
Just Accepted Date: 18 September 2019   Online First Date: 12 November 2019    Issue Date: 03 April 2020
 Cite this article:   
Huangjia LI,Boqin MA. Research development on fabrication and optical properties of nonlinear photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 35-49.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-019-0946-x
http://journal.hep.com.cn/foe/EN/Y2020/V13/I1/35
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huangjia LI
Boqin MA
Fig.1  Experimental schematic of  fabrication methods of nonlinear photonic crystals. (a) Electric field poling method with electrolyte; (b) electric field poling method with Al electrode [2]; (c) femtosecond direct laser writing technique [15]. The inset outlines the inscription routine in which the black lines indicate the switch of the laser is turned off
Fig.2  All the types of phase-matching  condition during χ2 processes. (a)Birefringent phase matching (BPM) and quasi-phase matching (QPM) processes [22]

Reproduced from Ref. [22], with the permission of the American Institute of Physics

; (b) spontaneously longitudinal phase matching generates nonlinear Čerenkov radiation (NCR) without reciprocal vectors compensation; (c) transverse phase matching compensated by reciprocal vectors generates nonlinear Raman-Nath diffraction (NRND); (d) nonlinear Bragg diffraction (NBD) generated by both transverse and longitudinal phase matching
Fig.3  Experimental schematic and  observed second harmonic diffraction patterns of nonlinear Raman-Nath diffraction in one-dimensional single-period structure. (a) Experimental schematic with structured nonlinear photonic crystal [28]

Adapted with permission from Ref. [28], © The Optical Society

; (b) nonlinear diffraction pattern of structured nonlinear photonic crystal [28]; (c) holograms loaded on spatial light modulator representing the phase structure of the fundamental wave [29]

Adapted with permission from Ref. [29], © The Optical Society

; (d) nonlinear diffraction pattern of structured fundamental wave [29]
Fig.4  Schematic diagrams of the structural  geometry in one-dimensional superlattices. (a) Fibonacci quasi-periodic superlattice [3]; (b) cascaded dual-periodic superlattice [30]; (c) chirped superlattice [31]; (d) short-range ordered superlattice [32]
Ref. superlattice
structure
ferroelectric
crystal
fundamental
wavelength/mm
nonlinear
effect
harmonic
wavelength/mm
conversion
efficiency
bandwith
/nm
[3] Fibonacci LiTaO3 0.9726, 1.0846,
1.2834, 1.3650,
1.5699
SHG 0.4863, 0.5423,
0.6417, 0.6825,
0.7845
7.5%, 17.5%,
9.1%, 6.7%,
20.4%
0.3, 0.4,
0.85, 1.1,
2.5
LiTaO3 1.570 THG 0.523 23% 5
[27] single-period LiNbO3 1.064 SHG 0.532 42%
[30] cascaded
(dual-period
+ 7 channels)
LiTaO3 1.064, 1.342 SHG+ THG 447, 532, 671
quasi-white-light
3%
[31] chirped LiNbO3 1.37−1.47 SHG 0.69−0.74 30% 98
LiNbO3 1.38−1.45 THG 0.46−0.48 2% 74
[32] short-range ordered LiNbO3 1.50 SHG 0.75 0.23% 60
Tab.1  Experimental parameters of  quasi-phase matching harmonic generation in one-dimensional superlattices
Fig.5  Schematic diagrams of the  structural geometry in two-dimensional superlattices. (a) Hexagonal superlattice [6]; (b) annular superlattice [40]

Adapted with permission from Ref. [40], © The Optical Society

; (c) brick-like superlattice [41]; (d) ellipse superlattice [42]; (e) octagonal superlattice [43]; (f) H-fractal superlattice [44]; (g) sunflower spiral superlattice [12]

Adapted with permission from Ref. [12], © The Optical Society

; (h) short-range ordered superlattice [13]; (i) radial superlattice [10]
Fig.6  Conversion efficiencies under multiple fundamental wavelengths within two-dimensional superlattices
Fig.7  Nonlinear diffraction second or  third harmonic generation in two-dimensional superlattices. (a) Sunflower spiral LiNbO3 [12]

Adapted with permission from Ref. [12], © The Optical Society

; (b) short-range ordered LiNbO3 [13]; (c) two collinear fundamental waves [10]; (d) two crossed noncollinear fundamental waves [56]

Adapted with permission from Ref. [56], © The Optical Society

Fig.8  Patterns of quasi-phase matching  harmonics and schematic diagrams of the structural geometry in three-dimensional superlattices. (a) Patterns of harmonics generated from naturally grown Ba0.77Ca0.23TiO3 [20]; (b) tetragonal LiNbO3 fabricated by femtosecond laser engineering [60]; (c) tetragonal Ba0.77Ca0.23TiO3 fabricated by tightly focused infrared femtosecond laser pulses [61]; (d) cylindrical and cubical structures simulated by computer [62]

Adapted with permission from Ref. [62], © The Optical Society

Fig.9  Experimental schematic of  different applications of nonlinear photonic crystal. (a) Domain visualization [9]

Adapted with permission from Ref. [9], © The Optical Society

; (b)

Adapted with permission from Ref. [63], © The Optical Society

optical parametric oscillator [63]; (c)

Adapted with permission from Ref. [64], © The Optical Society

terahertz-wave difference-frequency generation [64]; (d) holographic beam shaping [65]; (e) gas detection [66]
1 J A Armstrong, N Bloembergen, J Ducuing, P S Pershan. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
https://doi.org/10.1103/PhysRev.127.1918
2 M Yamada, N Nada, M Saitoh, K Watanabe. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
https://doi.org/10.1063/1.108925
3 S Zhu, Y Zhu, Y Qin, H Wang, C Ge, N Ming. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755
https://doi.org/10.1103/PhysRevLett.78.2752
4 S Zhu, Y Zhu, N Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
https://doi.org/10.1126/science.278.5339.843
5 V Berger. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
https://doi.org/10.1103/PhysRevLett.81.4136
6 N G Broderick, G W Ross, H L Offerhaus, D J Richardson, D C Hanna. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84(19): 4345–4348
https://doi.org/10.1103/PhysRevLett.84.4345 pmid: 10990682
7 A Fragemann, V Pasiskevicius, F Laurell. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters, 2004, 85(3): 375–377
https://doi.org/10.1063/1.1775031
8 S M Saltiel, D N Neshev, W Krolikowski, A Arie, Y S Kivshar. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2
9 Y Sheng, A Best, H J Butt, W Krolikowski, A Arie, K Koynov. Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. Optics Express, 2010, 18(16): 16539–16545
https://doi.org/10.1364/OE.18.016539 pmid: 20721043
10 H Li, S Mu, P Xu, M Zhong, C Chen, X Hu, W Cui, S Zhu. Multicolor Čerenkov conical beams generation by cascaded-c(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters, 2012, 100(10): 101101
https://doi.org/10.1063/1.3692593
11 B Ma, K Kafka, E Chowdhury. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters, 2017, 15(5): 051901
https://doi.org/10.3788/COL201715.051901
12 S Liu, K Switkowski, X Chen, T Xu, W Krolikowski, Y Sheng. Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express, 2018, 26(7): 8628–8633
https://doi.org/10.1364/OE.26.008628 pmid: 29715827
13 Y Sheng, W Wang, R Shiloh, V Roppo, Y Kong, A Arie, W Krolikowski. Čerenkov third-harmonic generation in c(2) nonlinear photonic crystal. Applied Physics Letters, 2011, 98(24): 241114
https://doi.org/10.1063/1.3602312
14 J Yao, G Li, J Xu, G Zhang. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics, 1999, 16(4): 289–294
15 J Thomas, V Hilbert, R Geiss, T Pertsch, A Tünnermann, S Nolte. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews, 2013, 7(3): L17–L20
https://doi.org/10.1002/lpor.201200116
16 G Rosenman, P Urenski, A Agronin, Y Rosenwaks, M Molotskii. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters, 2003, 82(1): 103–105
https://doi.org/10.1063/1.1534410
17 M Yamada, K Kishima. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters, 1991, 27(10): 828–829
https://doi.org/10.1049/el:19910519
18 D Wei, Y Zhu, W Zhong, G Cui, H Wang, Y He, Y Zhang, Y Lu, M Xiao. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 2017, 110(26): 261104
https://doi.org/10.1063/1.4990527
19 G A Magel, M M Fejer, R L Byer. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters, 1990, 56(2): 108–110
https://doi.org/10.1063/1.103276
20 T Xu, D Lu, H Yu, H Zhang, Y Zhang, J Wang. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters, 2016, 108(5): 051907
https://doi.org/10.1063/1.4941432
21 H Leng. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Dissertation for the Doctoral Degree. Nanjing: Nanjing University, 2014, 77–79
22 M M Fejer. Nonlinear optical frequency conversion. Physics Today, 1994, 47(5): 25–32
https://doi.org/10.1063/1.881430
23 I Freund. Nonlinear diffraction. Physical Review Letters, 1968, 21(19): 1404–1406
https://doi.org/10.1103/PhysRevLett.21.1404
24 K Kalinowski, P Roedig, Y Sheng, M Ayoub, J Imbrock, C Denz, W Krolikowski. Enhanced Čerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters, 2012, 37(11): 1832–1834
https://doi.org/10.1364/OL.37.001832 pmid: 22660044
25 A M Vyunishev, V V Slabko, I S Baturin, A R Akhmatkhanov, V Y Shur. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39(14): 4231–4234
https://doi.org/10.1364/OL.39.004231 pmid: 25121694
26 X Wang, X Zhao, Y Zheng, X Chen. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics, 2017, 56(3): 750–754
https://doi.org/10.1364/AO.56.000750 pmid: 28157940
27 G D Miller, R G Batchko, W M Tulloch, D R Weise, M M Fejer, R L Byer. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters, 1997, 22(24): 1834–1836
https://doi.org/10.1364/OL.22.001834 pmid: 18188379
28 S M Saltiel, D N Neshev, W Krolikowski, A Arie, O Bang, Y S Kivshar. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters, 2009, 34(6): 848–850
https://doi.org/10.1364/OL.34.000848 pmid: 19282953
29 H Liu, J Li, X Zhao, Y Zheng, X Chen. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express, 2016, 24(14): 15666–15671
https://doi.org/10.1364/OE.24.015666 pmid: 27410839
30 H Li, Y Fan, P Xu, S Zhu, P Lu, Z Gao, H Wang, Y Zhu, N Ming, J L He. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96(12): 7756–7758
https://doi.org/10.1063/1.1818711
31 B Chen, M Ren, R Liu, C Zhang, Y Sheng, B Ma, Z Li. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications, 2014, 3(7): e189
https://doi.org/10.1038/lsa.2014.70
32 W Wang, X Niu, C Zhou. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals, 2014, 43(5): 1252–1256
33 B Gu, B Dong, Y Zhang, G Yang. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters, 1999, 75(15): 2175–2177
https://doi.org/10.1063/1.124956
34 N Segal, S Keren-Zur, N Hendler, T Ellenbogen. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180–184
https://doi.org/10.1038/nphoton.2015.17
35 F Reyes Gómez, N Porras-Montenegro, O N Oliveira Jr, J R Mejía-Salazar. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega, 2018, 3(12): 17922–17927
https://doi.org/10.1021/acsomega.8b02837 pmid: 31458384
36 F R Gómez, N Porras-Montenegro, O N Oliveira, J R Mejía-Salazar. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B, 2018, 98(7): 075406
https://doi.org/10.1103/PhysRevB.98.075406
37 F R Gómez, J R Mejía-Salazar. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters, 2015, 40(21): 5034–5037
https://doi.org/10.1364/OL.40.005034 pmid: 26512512
38 A X Robles-Uriza, F R Gómez, J R Mejía-Salazar. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures, 2016, 97: 110–115
https://doi.org/10.1016/j.spmi.2016.06.020
39 F R Gómez, J R Mejía-Salazar, O N Oliveira, N Porras-Montenegro. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B, 2017, 96(7): 075429
https://doi.org/10.1103/PhysRevB.96.075429
40 D Kasimov, A Arie, E Winebrand, G Rosenman, A Bruner, P Shaier, D Eger. Annular symmetry nonlinear frequency converters. Optics Express, 2006, 14(20): 9371–9376
https://doi.org/10.1364/OE.14.009371 pmid: 19529321
41 Y Q Qin, C Zhang, Y Y Zhu, X P Hu, G Zhao. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters, 2008, 100(6): 063902
https://doi.org/10.1103/PhysRevLett.100.063902 pmid: 18352473
42 B Chen, C Zhang, R Liu, Z Li. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters, 2014, 105(15): 151106
https://doi.org/10.1063/1.4898187
43 B Ma, T Wang, Y Sheng, P Ni, Y Wang, B Cheng, D Zhang. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters, 2005, 87(25): 251103
https://doi.org/10.1063/1.2138352
44 B Ma, M Ren, D Ma, Z Li. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics, 2013, 111(2): 183–187
https://doi.org/10.1007/s00340-012-5277-1
45 Y Zhang, Z D Gao, Z Qi, S N Zhu, N B Ming. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters, 2008, 100(16): 163904
https://doi.org/10.1103/PhysRevLett.100.163904 pmid: 18518200
46 P Ni, B Ma, X Wang, B Cheng, D Zhang. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters, 2003, 82(24): 4230–4232
https://doi.org/10.1063/1.1579856
47 L Peng, C Hsu, J Ng, A Kung. Wavelength tunability of second-harmonic generation from two-dimensional c(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters, 2004, 84(17): 3250–3252
https://doi.org/10.1063/1.1728303
48 P Ni, B Ma, S Feng, B Cheng, D Zhang. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications, 2004, 233(1–3): 199–203
https://doi.org/10.1016/j.optcom.2004.01.003
49 S M Saltiel, Y Sheng, N Voloch-Bloch, D N Neshev, W Krolikowski, A Arie, K Koynov, Y S Kivshar. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465–1472
https://doi.org/10.1109/JQE.2009.2030147
50 T Wang, B Ma, Y Sheng, P Ni, B Cheng, D Zhang. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications, 2005, 252(4–6): 397–401
https://doi.org/10.1016/j.optcom.2005.04.019
51 Y Sheng, K Koynov, D Zhang. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282(17): 3602–3606
https://doi.org/10.1016/j.optcom.2009.05.075
52 B Hou, G Xu, W Wen, G K Wong. Diffraction by an optical fractal grating. Applied Physics Letters, 2004, 85(25): 6125–6127
https://doi.org/10.1063/1.1840112
53 H Park, A Camper, K Kafka, B Ma, Y H Lai, C Blaga, P Agostini, L F DiMauro, E Chowdhury. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters, 2017, 42(19): 4020–4023
https://doi.org/10.1364/OL.42.004020 pmid: 28957187
54 B Ma, H Li. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers, 2019, 46(2): 0208001
https://doi.org/10.3788/CJL201946.0208001
55 L Mateos, P Molina, J Galisteo, C López, L E Bausá, M O Ramírez. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20(28): 29940–29948
https://doi.org/10.1364/OE.20.029940 pmid: 23388820
56 W Wang, Y Sheng, Y Kong, A Arie, W Krolikowski. Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters, 2010, 35(22): 3790–3792
https://doi.org/10.1364/OL.35.003790 pmid: 21081998
57 S M Saltiel, D N Neshev, W Krolikowski, N Voloch-Bloch, A Arie, O Bang, Y S Kivshar. Nonlinear diffraction from a virtual beam. Physical Review Letters, 2010, 104(8): 083902
https://doi.org/10.1103/PhysRevLett.104.083902 pmid: 20366931
58 A M Vyunishev, V G Arkhipkin, I S Baturin, A R Akhmatkhanov, V Y Shur, A S Chirkin. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a c(2) photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15(4): 045401
https://doi.org/10.1088/1612-202X/aaa618
59 E Almeida, O Bitton, Y Prior. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
https://doi.org/10.1038/ncomms12533 pmid: 27545581
60 D Wei, C Wang, H Wang, X Hu, D Wei, X Fang, Y Zhang, D Wu, Y Hu, J Li, S Zhu, M Xiao. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596–600
https://doi.org/10.1038/s41566-018-0240-2
61 T Xu, K Switkowski, X Chen, S Liu, K Koynov, H Yu, H Zhang, J Wang, Y Sheng, W Krolikowski. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12(10): 591–595
https://doi.org/10.1038/s41566-018-0225-1
62 J Zhang, X Zhao, Y Zheng, H Li, X Chen. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express, 2018, 26(12): 15675–15682
https://doi.org/10.1364/OE.26.015675 pmid: 30114825
63 P E Powers, T J Kulp, S E Bisson. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters, 1998, 23(3): 159–161
https://doi.org/10.1364/OL.23.000159 pmid: 18084445
64 Y Sasaki, Y Avetisyan, H Yokoyama, H Ito. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters, 2005, 30(21): 2927–2929
https://doi.org/10.1364/OL.30.002927 pmid: 16279471
65 A Shapira, L Naor, A Arie. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin, 2015, 60(16): 1403–1415
https://doi.org/10.1007/s11434-015-0855-3
66 A Tokura, M Asobe, K Enbutsu, T Yoshihara, S N Hashida, H Takenouchi. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel), 2013, 13(8): 9999–10013
https://doi.org/10.3390/s130809999 pmid: 23921829
67 L E Myers, G D Miller, R C Eckardt, M M Fejer, R L Byer, W R Bosenberg. Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters, 1995, 20(1): 52–54
https://doi.org/10.1364/OL.20.000052 pmid: 19855794
68 L E Myers, W R Bosenberg. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663–1672
https://doi.org/10.1109/3.631262
69 K C Burr, C L Tang, M A Arbore, M M Fejer. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters, 1997, 70(25): 3341–3343
https://doi.org/10.1063/1.119164
70 R G Batchko, D R Weise, T Plettner, G D Miller, M M Fejer, R L Byer. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters, 1998, 23(3): 168–170
https://doi.org/10.1364/OL.23.000168 pmid: 18084448
71 T D Wang, S T Lin, Y Y Lin, A C Chiang, Y C Huang. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express, 2008, 16(9): 6471–6478
https://doi.org/10.1364/OE.16.006471 pmid: 18545351
72 H Liu, X Zhao, H Li, Y Zheng, X Chen. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters, 2018, 43(14): 3236–3239
https://doi.org/10.1364/OL.43.003236 pmid: 30004474
Related articles from Frontiers Journals
[1] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed