Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2020, Vol. 13 Issue (1) : 18-34     https://doi.org/10.1007/s12200-019-0942-1
REVIEW ARTICLE
Distributed feedback organic lasing in photonic crystals
Yulan FU, Tianrui ZHAI()
Institute of Information Photonics Technology, College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Download: PDF(3014 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considerable research efforts have been devoted to the investigation of distributed feedback (DFB) organic lasing in photonic crystals in recent decades. It is still a big challenge to realize DFB lasing in complex photonic crystals. This review discusses the recent progress on the DFB organic laser based on one-, two-, and three-dimensional photonic crystals. The photophysics of gain materials and the fabrication of laser cavities are also introduced. At last, future development trends of the lasers are prospected.

Keywords photonic crystals      microcavity lasers      distributed feedback (DFB)     
Corresponding Author(s): Tianrui ZHAI   
Just Accepted Date: 11 September 2019   Online First Date: 07 November 2019    Issue Date: 03 April 2020
 Cite this article:   
Yulan FU,Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-019-0942-1
http://journal.hep.com.cn/foe/EN/Y2020/V13/I1/18
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yulan FU
Tianrui ZHAI
Fig.1  Absorption and PL spectra of (a) PFO, (b) F8BT, and (c) MDMO-PPV. The upper panel presents the corresponding molecular structure. Reproduced with permission [80]. Copyright 2015, RSC Publishing
Fig.2  Absorption and PL spectra of (a) coumarin 440, (b) coumarin 153, and (c) rhodamine 6G. Reproduced with permission [90]. Copyright 2014, OSA Publishing
Fig.3  Absorption and PL spectra of (a) blue QDs, (b) green QDs, and (c) red QDs
Fig.4  Schematics of various cavity types. (a) FP cavity; (b) WGM cavity; (c) DBR cavity; (d) DFB cavity
Fig.5  Photonic crystals for DFB cavities. (a) 1D gratings; (b) 2D periodic structure; (c) 3D periodic structure; (d) Fibonacci quasi-crystals; (e) 2D quasi-crystals; (f) 3D quasi-crystals; (g) Chirped gratings; (h) 2D gradual periodic structure; (i) 3D random structure
Fig.6  (a) Schematic of the feedback and the outcoupling of the waveguide mode; (b) diffraction theory of DFB lasers. Reproduced with permission [123]. Copyright 2019, MDPI
Fig.7  (a) Schematic of DFB lasers; (b) reduced multi-layered model. L is the grating period; d is the thickness of air; t is the grating depth; h is the gain waveguide thickness. The red curve indicates the mode profile
Fig.8  Schematic of DFB lasers with different configurations. (a) Gain/cavity/substrate; (b) cavity/gain/substrate; (c) active cavity/substrate
Fig.9  (a) Illustration of the experimental setup and formation mechanism of the pattern of a 3rd order DFB polymer laser; the purple spots shown in the right photograph are the reflection and diffraction of the pumping laser; (b) 2nd order laser pattern; (c) 3rd order laser pattern; (d) 4th order laser pattern. Reproduced with permission [123]. Copyright 2019, MDPI
Fig.10  (a) Schematic of organic vortex laser arrays based on spiral gratings. SEM images of the center of the (b) one-arm spiral, (c) two-arm spiral, and (d) three-arm spiral gratings. Beam profiles recorded for the beams generated using (e) circular, (f) one-arm, (g) two-arm, and (h) three-arm spiral gratings. Reproduced with permission [122]. Copyright 2018, ACS Publishing
Fig.11  (a) 7-beam configuration for the icosahedral quasicrystal. The upper inset denotes an icosahedral quasicrystal lattice; (b) actual 7-beam arrangement using a truncated pentagonal pyramid; (c) icosahedral quasicrystal lasing pattern projected on the back side of the glass substrate (see lower inset). DCG is the abbreviation of the dichromate gelatin emulsions; (d) higher resolution projection of the icosahedral quasicrystal lasing for inner region. The lines are guides to the eyes. Reproduced with permission [183]. Copyright 2009, OSA Publishing
1 E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
https://doi.org/10.1103/PhysRevLett.58.2059 pmid: 10034639
2 S John. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
https://doi.org/10.1103/PhysRevLett.58.2486 pmid: 10034761
3 J D Joannopoulos, P R Villeneuve, S Fan. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621): 143–149
https://doi.org/10.1038/386143a0
4 K Sakoda. Optical Properties of Photonic Crystals. New York: Springer, 2001
5 T Zhai, D Liu, X Zhang. Photonic crystals and microlasers fabricated with low refractive index material. Frontiers in Physics, 2010, 5(3): 266–276
https://doi.org/10.1007/s11467-010-0003-0
6 T F Krauss, R Rue, S Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 1996, 383(6602): 699–702
https://doi.org/10.1038/383699a0
7 M E Zoorob, M D Charlton, G J Parker, J J Baumberg, M C Netti. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404(6779): 740–743
https://doi.org/10.1038/35008023 pmid: 10783882
8 M Campbell, D N Sharp, M T Harrison, R G Denning, A J Turberfield. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53–56
https://doi.org/10.1038/35003523 pmid: 10716437
9 J M Bendickson, J P Dowling, M Scalora. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Physical Review E, 1996, 53(4): 4107–4121
https://doi.org/10.1103/PhysRevE.53.4107 pmid: 9964724
10 G Boedecker, C Henkel. All-frequency effective medium theory of a photonic crystal. Optics Express, 2003, 11(13): 1590–1595
https://doi.org/10.1364/OE.11.001590 pmid: 19466035
11 Z Wang, T Zhai, J Lin, D Liu. Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B, Optical Physics, 2007, 24(9): 2416–2420
https://doi.org/10.1364/JOSAB.24.002416
12 J Dowling, M Scalora, M Bloemer, C Bowden. The photonic band edge laser: a new approach to gain enhancement. Journal of Applied Physics, 1994, 75(4): 1896–1899
https://doi.org/10.1063/1.356336
13 C O Cho, J Jeong, J Lee, H Jeon, I Kim, D H Jang, Y S Park, J C Woo. Photonic crystal band edge laser array with a holographically generated square-lattice pattern. Applied Physics Letters, 2005, 87(16): 161102
https://doi.org/10.1063/1.2103422
14 H Kim, M Lee, H Jeong, M S Hwang, H R Kim, S Park, Y D Park, T Lee, H G Park, H Jeon. Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10(18): 8496–8502
https://doi.org/10.1039/C8NR01614C pmid: 29693097
15 X Hu, P Jiang, C Ding, H Yang, Q Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
https://doi.org/10.1038/nphoton.2007.299
16 R Bose, D Sridharan, H Kim, G S Solomon, E Waks. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402
https://doi.org/10.1103/PhysRevLett.108.227402 pmid: 23003653
17 K Nozaki, A Shinya, S Matsuo, T Sato, E Kuramochi, M Notomi. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 2013, 21(10): 11877–11888
https://doi.org/10.1364/OE.21.011877 pmid: 23736410
18 Q Liu, Z Ouyang, C J Wu, C P Liu, J C Wang. All-optical half adder based on cross structures in two-dimensional photonic crystals. Optics Express, 2008, 16(23): 18992–19000
https://doi.org/10.1364/OE.16.018992 pmid: 19581992
19 M W McCutcheon, G W Rieger, J F Young, D Dalacu, P J Poole, R L Williams. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95(22): 221102
https://doi.org/10.1063/1.3265736
20 Y Fu, X Hu, Q Gong. Silicon photonic crystal all-optical logic gates. Physics Letters A, 2013, 377(3–4): 329–333
https://doi.org/10.1016/j.physleta.2012.11.034
21 V I V I Rupasov, M Singh. Quantum gap solitons and many-polariton-atom bound states in dispersive medium and photonic band gap. Physical Review Letters, 1996, 77(2): 338–341
https://doi.org/10.1103/PhysRevLett.77.338 pmid: 10062426
22 P Xie, Z Q Zhang. Multifrequency gap solitons in nonlinear photonic crystals. Physical Review Letters, 2003, 91(21): 213904
https://doi.org/10.1103/PhysRevLett.91.213904 pmid: 14683304
23 O Peleg, G Bartal, B Freedman, O Manela, M Segev, D N Christodoulides. Conical diffraction and gap solitons in honeycomb photonic lattices. Physical Review Letters, 2007, 98(10): 103901
https://doi.org/10.1103/PhysRevLett.98.103901 pmid: 17358534
24 J Wu, D Day, M Gu. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Applied Physics Letters, 2008, 92(7): 071108
https://doi.org/10.1063/1.2840700
25 C Kang, C T Phare, Y A Vlasov, S Assefa, S M Weiss. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937
https://doi.org/10.1364/OE.18.027930 pmid: 21197066
26 K T Sørensen, C B Ingvorsen, L H Nielsen, A Kristensen. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Optics Express, 2018, 26(5): 5416–5422
https://doi.org/10.1364/OE.26.005416 pmid: 29529744
27 O Painter, R K Lee, A Scherer, A Yariv, J D O’Brien, P D Dapkus, I Kim. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819–1821
https://doi.org/10.1126/science.284.5421.1819 pmid: 10364550
28 H G Park, S H Kim, S H Kwon, Y G Ju, J K Yang, J H Baek, S B Kim, Y H Lee. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444–1447
https://doi.org/10.1126/science.1100968 pmid: 15353796
29 X Yang, C W Wong. Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers. Optics Express, 2007, 15(8): 4763–4780
https://doi.org/10.1364/OE.15.004763 pmid: 19532722
30 H Y Ryu, S H Kwon, Y J Lee, Y H Lee, F Kim. Very low threshold photonic band edge lasers from free standing trlangular photonic crystal slabs. Applied Physics Letters, 2002, 80(19): 3476–3478
https://doi.org/10.1063/1.1477617
31 F B Arango, M B Christiansen, M Gersborg-Hansen, A Kristensen. Optofluidic tuning of photonic crystal band edge lasers. Applied Physics Letters, 2007, 91(22): 223503
https://doi.org/10.1063/1.2817610
32 H Jung, M Lee, C Han, Y Park, K S Cho, H Jeon. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Optics Express, 2017, 25(26): 32919
https://doi.org/10.1364/OE.25.032919
33 C Monat, C Seassal, X Letartre, P Regreny, P Rojo-Romeo, P Viktorovitch, M Le Vassor d’Yerville, D Cassagne, J P Albert, E Jalaguier, S Pocas, B Aspar. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Applied Physics Letters, 2002, 81(27): 5102–5104
https://doi.org/10.1063/1.1532554
34 M Imada, S Noda, A Chutinan, T Tokuda, M Murata, G Sasaki. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Applied Physics Letters, 1999, 75(3): 316–318
https://doi.org/10.1063/1.124361
35 M Kok, W Lu, J Lee, W Tam, G Wong, C Chan. Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters, 2008, 92(15): 151108
https://doi.org/10.1063/1.2907488
36 M Meier, A Mekis, A Dodabalapur, A Timko, R E Slusher, J D Joannopoulos, O Nalamasu. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 1999, 74(1): 7–9
https://doi.org/10.1063/1.123116
37 S Riechel, C Kallinger, U Lemmer, J Feldmann, A Gombert, V Wittwer, U Scherf. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Applied Physics Letters, 2000, 77(15): 2310–2312
https://doi.org/10.1063/1.1310207
38 M Notomi, H Suzuki, T Tamamura. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Applied Physics Letters, 2001, 78(10): 1325–1327
https://doi.org/10.1063/1.1352671
39 G Turnbull, P Andrew, M Jory, W L Barnes, I Samuel. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64(12): 125122
https://doi.org/10.1103/PhysRevB.64.125122
40 P Andrew, G Turnbull, I Samuel, W Barnes. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
https://doi.org/10.1063/1.1496497
41 G Turnbull, P Andrew, W L Barnes, I Samuel. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67(16): 165107
https://doi.org/10.1103/PhysRevB.67.165107
42 I D Samuel, G A Turnbull. Polymer lasers: recent advances. Materials Today, 2004, 7(9): 28–35
https://doi.org/10.1016/S1369-7021(04)00399-2
43 J Herrnsdorf, B Guilhabert, Y Chen, A Kanibolotsky, A Mackintosh, R Pethrick, P Skabara, E Gu, N Laurand, M Dawson. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Optics Express, 2010, 18(25): 25535–25545
https://doi.org/10.1364/OE.18.025535 pmid: 21164899
44 T Zhai, X Zhang, Z Pang. Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19(7): 6487–6492
https://doi.org/10.1364/OE.19.006487 pmid: 21451677
45 G Vecchi, F Raineri, I Sagnes, A Yacomotti, P Monnier, T J Karle, K H Lee, R Braive, L Le Gratiet, S Guilet, G Beaudoin, A Taneau, S Bouchoule, A Levenson, R Raj. Continuous-wave operation of photonic band-edge laser near 1.55 μm on silicon wafer. Optics Express, 2007, 15(12): 7551–7556
https://doi.org/10.1364/OE.15.007551 pmid: 19547080
46 J P van der Ziel, W T Tsang, R A Logan, R M Mikulyak, W M. Augustyniak Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Applied Physics Letters, 1981, 39(7): 525–527
https://doi.org/10.1063/1.92802
47 B Dahmani, L Hollberg, R Drullinger. Frequency stabilization of semiconductor lasers by resonant optical feedback. Optics Letters, 1987, 12(11): 876–878
https://doi.org/10.1364/OL.12.000876 pmid: 19741901
48 M San Miguel, Q Feng, J V Moloney. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 1995, 52(2): 1728–1739
https://doi.org/10.1103/PhysRevA.52.1728 pmid: 9912413
49 C V Shank. Physics of dye lasers. Reviews of Modern Physics, 1975, 47(3): 649–657
https://doi.org/10.1103/RevModPhys.47.649
50 N N Ledentsov, V M Ustinov, A Y Egorov, A E Zhukov, M V Maksimov, I G Tabatadze, P S Kop′ev. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8): 832–834
51 N Kirstaedter, O G Schmidt, N N Ledentsov, D Bimberg, V M Ustinov, A Y Egorov, A E Zhukov, M V Maximov, P S Kop’ev, Z I Alferov. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226–1228
https://doi.org/10.1063/1.117419
52 D Bimberg, M Grundmann, F Heinrichsdorff, N N Ledentsov, V M Ustinov, A E Zhukov, A R Kovsh, M V Maximov, Y M Shernyakov, B V Volovik, A F Tsatsul’nikov, P S Kop’ev, Z I Alferov. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 2000, 367(1–2): 235–249
https://doi.org/10.1016/S0040-6090(00)00697-0
53 S A Veldhuis, P P Boix, N Yantara, M Li, T C Sum, N Mathews, S G Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
https://doi.org/10.1002/adma.201600669 pmid: 27214091
54 K Wang, S Wang, S Xiao, Q Song. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials, 2018, 6(18): 1800278
https://doi.org/10.1002/adom.201800278
55 Q Wei, X Li, C Liang, Z Zhang, J Guo, G Hong, G Xing, W Huang. Recent progress in metal halide perovskite micro- and nanolasers. Advanced Optical Materials, 2019, 7(20): 1900080
https://doi.org/10.1002/adom.201900080
56 W F Zhang, H Zhu, S F Yu, H Y Yang. Observation of lasing emission from carbon nanodots in organic solvents. Advanced Materials, 2012, 24(17): 2263–2267
https://doi.org/10.1002/adma.201104950 pmid: 22454321
57 S Qu, X Liu, X Guo, M Chu, L Zhang, D Shen. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24(18): 2689–2695
https://doi.org/10.1002/adfm.201303352
58 C W Tang, S A Vanslyke. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
https://doi.org/10.1063/1.98799
59 J H Schön, C Kloc, A Dodabalapur, B Batlogg. An organic solid state injection laser. Science, 2000, 289(5479): 599–601
https://doi.org/10.1126/science.289.5479.599 pmid: 10915617
60 V A Montes, G Li, R Pohl, J Shinar, P Anzenbacher. Effective color tuning in organic light‐emitting diodes based on aluminum Tris(5‐aryl‐8‐hydroxyquinoline) complexes. Advanced Materials, 2004, 16(22): 2001–2003
https://doi.org/10.1002/adma.200401155
61 J R Lawrence, G A Turnbull, I D Samuel, G J Richards, P L Burn. Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29(8): 869–871
https://doi.org/10.1364/OL.29.000869 pmid: 15119405
62 T Spehr, A Siebert, T Fuhrmann-Lieker, J Salbeck, T Rabe, T Riedl, H H Johannes, W Kowalsky, J Wang, T Weimann, P Hinze. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87(16): 161103
https://doi.org/10.1063/1.2105996
63 R Xia, W Y Lai, P A Levermore, W Huang, D D C Bradley. Low-threshold distributed-feedback lasers based on Pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Advanced Functional Materials, 2009, 19(17): 2844–2850
https://doi.org/10.1002/adfm.200900503
64 N Tessler, G Denton, R Friend. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697
https://doi.org/10.1038/382695a0
65 M Campoy-Quiles, G Heliotis, R Xia, M Ariu, M Pintani, P Etchegoin, D D C Bradley. Ellipsometric characterization of the optical constants of polyfluorene gain media. Advanced Functional Materials, 2005, 15(6): 925–933
https://doi.org/10.1002/adfm.200400121
66 B K Yap, R Xia, M Campoy-Quiles, P N Stavrinou, D D C Bradley. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Materials, 2008, 7(5): 376–380
https://doi.org/10.1038/nmat2165 pmid: 18408724
67 J R Lawrence, G A Turnbull, I D W Samuel. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
https://doi.org/10.1063/1.1579858
68 M Goossens, A Ruseckas, G A Turnbull, I D W Samuel. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Applied Physics Letters, 2004, 85(1): 31–33
https://doi.org/10.1063/1.1767952
69 M O’Neill, S M Kelly. Ordered materials for organic electronics and photonics. Advanced Materials, 2011, 23(5): 566–584
https://doi.org/10.1002/adma.201002884 pmid: 21274907
70 J Stehr, J Crewett, F Schindler, R Sperling, G von Plessen, U Lemmer, J M Lupton, T A Klar, J Feldmann, A W Holleitner, M Forster, U Scherf. A low threshold polymer laser based on metallic nanoparticle gratings. Advanced Materials, 2003, 15(20): 1726–1729
https://doi.org/10.1002/adma.200305221
71 M Reufer, S Riechel, J Lupton, J Feldmann, U Lemmer, D Schneider, T Benstem, T Dobbertin, W Kowalsky, A Gombert, K Forberich, V Wittwer, U Scherf. Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 2004, 84(17): 3262–3264
https://doi.org/10.1063/1.1712029
72 M Marcus, J D Milward, A Köhler, W Barford. Structural information for conjugated polymers from optical modeling. Journal of Physical Chemistry A, 2018, 122(14): 3621–3625
https://doi.org/10.1021/acs.jpca.8b01585 pmid: 29565593
73 T Virgili, D G Lidzey, M Grell, D D C Bradley, S Stagira, M Zavelani-Rossi, S De Silvestri. Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80(22): 4088–4090
https://doi.org/10.1063/1.1481977
74 Y Yang, G A Turnbull, I D W Samuel. Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 2010, 20(13): 2093–2097
https://doi.org/10.1002/adfm.200901904
75 U Giovanella, P Betti, A Bolognesi, S Destri, M Melucci, M Pasini, W Porzio, C Botta. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Organic Electronics, 2010, 11(12): 2012–2018
https://doi.org/10.1016/j.orgel.2010.09.009
76 M Yan, L J Rothberg, F Papadimitrakopoulos, M E Galvin, T M Miller. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Physical Review Letters, 1994, 72(7): 1104–1107
https://doi.org/10.1103/PhysRevLett.72.1104 pmid: 10056618
77 G Heliotis, D D C Bradley, G A Turnbull, I D W Samuel. Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 2002, 81(3): 415–417
https://doi.org/10.1063/1.1494473
78 S J Chang, X Liu, T T Lu, Y Y Liu, J Q Pan, Y Jiang, S Q Chu, W Y Lai, W Huang. Ladder-type poly(indenofluorene-co-benzothiadiazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(26): 6629–6639
https://doi.org/10.1039/C7TC02008B
79 F Lahoz, N Capuj, C J Oton, S Cheylan. Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides. Chemical Physics Letters, 2008, 463(4–6): 387–390
https://doi.org/10.1016/j.cplett.2008.08.084
80 T Zhai, Y Wang, L Chen, X Wu, S Li, X Zhang. Red-green-blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7(47): 19935–19939
https://doi.org/10.1039/C5NR05965H pmid: 26580128
81 P P Sorokin, J R Lankard. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163
https://doi.org/10.1147/rd.102.0162
82 P Czerney, G Graneß, E Birckner, F Vollmer, W Rettig. Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A Chemistry, 1995, 89(1): 31–36
https://doi.org/10.1016/1010-6030(94)04018-W
83 R F Khairutdinov, N Serpone. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B, 1997, 101(14): 2602–2610
https://doi.org/10.1021/jp9621134
84 L Cerdán, A Costela, I Garcíamoreno, J Bañuelos, I Lópezarbeloa. Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9(6): 426–433
https://doi.org/10.7452/lapl.201210019
85 M Tomasulo, S Sortino, A J P White, F M Raymo. Fast and stable photochromic oxazines. Journal of Organic Chemistry, 2005, 70(20): 8180–8189
https://doi.org/10.1021/jo051417w pmid: 16277345
86 X Shi, Y Wang, Z Wang, Y Sun, D Liu, Y Zhang, Q Li, J Shi. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103(2): 023504
https://doi.org/10.1063/1.4813558
87 T Zhai, Y Wang, H Liu, X Zhang. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Optics Express, 2015, 23(2): 1863–1870
https://doi.org/10.1364/OE.23.001863 pmid: 25835940
88 G Jones II, W Jackson, A Halpern. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chemical Physics Letters, 1980, 72(2): 391–395
https://doi.org/10.1016/0009-2614(80)80314-9
89 X Liu, J M Cole, P G Waddell, T C Lin, J Radia, A Zeidler. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A, 2012, 116(1): 727–737
https://doi.org/10.1021/jp209925y pmid: 22117623
90 Y Wang, X Shi, Y Sun, R Zheng, S Wei, J Shi, Z Wang, D Liu. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Optics Letters, 2014, 39(1): 5–8
https://doi.org/10.1364/OL.39.000005 pmid: 24365807
91 M M Wong, Z A Schelly. Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. Journal of Physical Chemistry, 1974, 78(19): 1891–1895
https://doi.org/10.1021/j100612a002
92 T Zhai, Y Zhou, S Chen, Z Wang, J Shi, D Liu, X Zhang. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A., 2010, 82(2): 023824
https://doi.org/10.1103/PhysRevA.82.023824
93 T Zhai, J Chen, L Chen, J Wang, L Wang, D Liu, S Li, H Liu, X Zhang. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7(6): 2235–2240
https://doi.org/10.1039/C4NR06632D pmid: 25565214
94 S C Kan, D Vassilovski, T C Wu, K Y Lau. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Applied Physics Letters, 1993, 62(19): 2307–2309
https://doi.org/10.1063/1.109400
95 N Kirstaedter, N N Ledentsov, M Grundmann, D Bimberg, V M Ustinov, S S Ruvimov, M V Maximov, P S Kop′ev, Z I Alferov, U Richter, P Werner, U Gösele, J Heydenreich. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417
https://doi.org/10.1049/el:19940939
96 S Fafard, K Hinzer, S Raymond, M Dion, J McCaffrey, Y Feng, S Charbonneau. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353
https://doi.org/10.1126/science.274.5291.1350 pmid: 8910269
97 K Yamashita, A Kitanobou, M Ito, E Fukuzawa, K Oe. Solid-state organic laser using self-written active waveguide with in-line Fabry–Pérot cavity. Applied Physics Letters, 2008, 92(14): 143305
https://doi.org/10.1063/1.2907351
98 K Yamashita, H Yanagi, K Oe. Array of a dye-doped polymer-based microlaser with multiwavelength emission. Optics Letters, 2011, 36(10): 1875–1877
https://doi.org/10.1364/OL.36.001875 pmid: 21593920
99 C Lafargue, S Bittner, S Lozenko, J Lautru, J Zyss, C Ulysse, C Cluzel, M Lebental. Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102(25): 251120
https://doi.org/10.1063/1.4812667
100 S Frolov, M Shkunov, Z Vardeny, K Yoshino. Ring microlasers from conducting polymers. Physical Review B, 1997, 56(8): 4363–4366
https://doi.org/10.1103/PhysRevB.56.R4363
101 S V Frolov, Z V Vardeny, K Yoshino. Plastic microring lasers on fibers and wires. Applied Physics Letters, 1998, 72(15): 1802–1804
https://doi.org/10.1063/1.121189
102 S Kushida, D Okada, F Sasaki, Z H Lin, J S Huang, Y Yamamoto. Lasers: low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers. Advanced Optical Materials, 2017, 5(10): 1700123
https://doi.org/10.1002/adom.201700123
103 L Persano, A Camposeo, P Del Carro, E Mele, R Cingolani, D Pisignano. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14(5): 1951–1956
https://doi.org/10.1364/OE.14.001951 pmid: 19503525
104 K D Singer, T Kazmierczak, J Lott, H Song, Y Wu, J Andrews, E Baer, A Hiltner, C Weder. Melt-processed all-polymer distributed Bragg reflector laser. Optics Express, 2008, 16(14): 10358–10363
https://doi.org/10.1364/OE.16.010358 pmid: 18607446
105 N Tsutsumi, T Ishibashi. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Optics Express, 2009, 17(24): 21698–21703
https://doi.org/10.1364/OE.17.021698 pmid: 19997411
106 K P Kretsch, W J Blau, V Dumarcher, L Rocha, C Fiorini, J M Nunzi, S Pfeiffer, H Tillmann, H H Hörhold. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Applied Physics Letters, 2000, 76(16): 2149–2151
https://doi.org/10.1063/1.126281
107 T R Zhai, X P Zhang, F Dou. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 2012, 29(10): 104204
https://doi.org/10.1088/0256-307X/29/10/104204
108 E R Martins, Y Wang, A L Kanibolotsky, P J Skabara, G A Turnbull, I D Samuel. Low‐threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Advanced Optical Materials, 2013, 1(8): 563–566
https://doi.org/10.1002/adom.201300211
109 T Zhai, X Wu, S Li, S Liang, L Niu, M Wang, S Feng, H Liu, X Zhang. Polymer lasing in a periodic-random compound cavity. Polymers, 2018, 10(11): 1194
https://doi.org/10.3390/polym10111194 pmid: 30961119
110 S Zhang, J Tong, C Chen, F Cao, C Liang, Y Song, T Zhai, X Zhang. Controlling the performance of polymer lasers via the cavity coupling. Polymers, 2019, 11(5): 764
https://doi.org/10.3390/polym11050764 pmid: 31052394
111 G Heliotis, R Xia, G Turnbull, P Andrew, W L Barnes, I D W Samuel, D D C Bradley. Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback. Advanced Functional Materials, 2004, 14(1): 91–97
https://doi.org/10.1002/adfm.200305504
112 H Cao, Y Zhao, S Ho, E Seelig, Q Wang, R Chang. Random laser action in semiconductor powder. Physical Review Letters, 1999, 82(11): 2278–2281
https://doi.org/10.1103/PhysRevLett.82.2278
113 D Wiersma. The physics and applications of random lasers. Nature Physics, 2008, 4(5): 359–367
https://doi.org/10.1038/nphys971
114 T Zhai, Y Wang, L Chen, X Zhang. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7(29): 12312–12317
https://doi.org/10.1039/C5NR01871D pmid: 26138990
115 P B Deotare, T S Mahony, V Bulović. Ultracompact low-threshold organic laser. ACS Nano, 2014, 8(11): 11080–11085
https://doi.org/10.1021/nn504444g pmid: 25244388
116 L Mahler, A Tredicucci, F Beltram, C Walther, J Faist, H E Beere, D A Ritchie, D S Wiersma. Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4(3): 165–169
https://doi.org/10.1038/nphoton.2009.285
117 W Man, M Megens, P J Steinhardt, P M Chaikin. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 2005, 436(7053): 993–996
https://doi.org/10.1038/nature03977 pmid: 16107842
118 Z V Vardeny, A Nahata, A Agrawal. Optics of photonic quasicrystals. Nature Photonics, 2013, 7(3): 177–187
https://doi.org/10.1038/nphoton.2012.343
119 T Zhai, F Cao, S Chu, Q Gong, X Zhang. Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26(4): 4491–4497
https://doi.org/10.1364/OE.26.004491 pmid: 29475299
120 G Barlow, K Shore. Threshold gain and threshold current analysis of circular grating DFB organic semiconductor lasers. IEE Proceedings-Optoelectronics, 2001, 148(4): 165–170
https://doi.org/10.1049/ip-opt:20010692
121 C Bauer, H Giessen, B Schnabel, E B Kley, C Schmitt, U Scherf, R F Mahrt. A surface-emitting circular grating polymer laser. Advanced Materials, 2001, 13(15): 1161–1164
https://doi.org/10.1002/1521-4095(200108)13:15<1161::AID-ADMA1161>3.0.CO;2-9
122 D Stellinga, M E Pietrzyk, J M E Glackin, Y Wang, A K Bansal, G A Turnbull, K Dholakia, I D W Samuel, T F Krauss. An organic vortex laser. ACS Nano, 2018, 12(3): 2389–2394
https://doi.org/10.1021/acsnano.7b07703 pmid: 29298373
123 P Zhou, L Niu, A Hayat, F Cao, T Zhai, X Zhang. Operating characteristics of high-order distributed feedback polymer lasers. Polymers, 2019, 11(2): 258
https://doi.org/10.3390/polym11020258 pmid: 30960243
124 T Zhai, X Zhang. Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101(14): 143507
https://doi.org/10.1063/1.4757871
125 H Kogelnik, C V Shank. Coupled‐wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335
https://doi.org/10.1063/1.1661499
126 R F Kazarinov, C H Henry. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 1985, 21(2): 144–150
https://doi.org/10.1109/JQE.1985.1072627
127 J Scheuer, A Yariv. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE Journal of Quantum Electronics, 2003, 39(12): 1555–1562
https://doi.org/10.1109/JQE.2003.819548
128 C Vannahme, C L C Smith, M B Christiansen, A Kristensen. Emission wavelength of multilayer distributed feedback dye lasers. Applied Physics Letters, 2012, 101(15): 151123
https://doi.org/10.1063/1.4759131
129 W Huang, S Shen, D Pu, G Wei, Y Ye, C Peng, L Chen. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. Journal of Physics D, 2015, 48(49): 495105
https://doi.org/10.1088/0022-3727/48/49/495105
130 T Zhai, X Wu, M Wang, F Tong, S Li, Y Ma, J Deng, X Zhang. Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109(10): 101906
https://doi.org/10.1063/1.4962552
131 F van Beijnum, P J van Veldhoven, E J Geluk, M J A de Dood, G W ’t Hooft, M P van Exter. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 2013, 110(20): 206802
https://doi.org/10.1103/PhysRevLett.110.206802 pmid: 25167437
132 C Kallinger, M Hilmer, A Haugeneder, M Perner, W Spirkl, U Lemmer, J Feldmann, U Scherf, K Müllen, A Gombert, V Wittwer. A flexible conjugated polymer laser. Advanced Materials, 1998, 10(12): 920–923
https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
133 B Wenger, N Tétreault, M Welland, R Friend. Mechanically tunable conjugated polymer distributed feedback lasers. Applied Physics Letters, 2010, 97(19): 193303
https://doi.org/10.1063/1.3509405
134 T Zhai, L Chen, S Li, Y Hu, Y Wang, L Wang, X Zhang. Free-standing membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108(4): 041904
https://doi.org/10.1063/1.4940714
135 C Chen, F Tong, F Cao, J Tong, T Zhai, X Zhang. Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26(24): 32048–32054
https://doi.org/10.1364/OE.26.032048 pmid: 30650783
136 F Cao, L Niu, J Tong, S Li, A Hayat, M Wang, T Zhai, X Zhang. Hybrid lasing in a plasmonic cavity. Optics Express, 2018, 26(10): 13383–13389
https://doi.org/10.1364/OE.26.013383 pmid: 29801367
137 T Zhai, F Tong, F Cao, L Niu, S Li, M Wang, X Zhang. Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111(11): 111901
https://doi.org/10.1063/1.5003110
138 P Andrew, G A Turnbull, I D Samuel, W L Barnes. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
https://doi.org/10.1063/1.1496497
139 W Zhou, M Dridi, J Y Suh, C H Kim, D T Co, M R Wasielewski, G C Schatz, T W Odom. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8(7): 506–511
https://doi.org/10.1038/nnano.2013.99 pmid: 23770807
140 C Foucher, B Guilhabert, A L Kanibolotsky, P J Skabara, N Laurand, M D Dawson. RGB and white-emitting organic lasers on flexible glass. Optics Express, 2016, 24(3): 2273–2280
https://doi.org/10.1364/OE.24.002273 pmid: 26906803
141 Y Wang, G Tsiminis, A L Kanibolotsky, P J Skabara, I D Samuel, G A Turnbull. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators. Optics Express, 2013, 21(12): 14362–14367
https://doi.org/10.1364/OE.21.014362 pmid: 23787624
142 G L Whitworth, S Zhang, J R Y Stevenson, B Ebenhoch, I D W Samuel, G A Turnbull. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Applied Physics Letters, 2015, 107(16): 163301
https://doi.org/10.1063/1.4933316
143 M Gaal, C Gadermaier, H Plank, E Moderegger, A Pogantsch, G Leising, E J W List. Imprinted conjugated polymer laser. Advanced Materials, 2003, 15(14): 1165–1167
https://doi.org/10.1002/adma.200305047
144 X Liu, S Klinkhammer, Z Wang, T Wienhold, C Vannahme, P J Jakobs, A Bacher, A Muslija, T Mappes, U Lemmer. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Optics Express, 2013, 21(23): 27697–27706
https://doi.org/10.1364/OE.21.027697 pmid: 24514287
145 M Baldo, M Deutsch, P Burrows, H Gossenberger, M Gerstenberg, V Ban, S Forrest. Organic vapor phase deposition. Advanced Materials, 1998, 10(18): 1505–1514
https://doi.org/10.1002/(SICI)1521-4095(199812)10:18<1505::AID-ADMA1505>3.0.CO;2-G
146 S Klinkhammer, X Liu, K Huska, Y Shen, S Vanderheiden, S Valouch, C Vannahme, S Bräse, T Mappes, U Lemmer. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Optics Express, 2012, 20(6): 6357–6364
https://doi.org/10.1364/OE.20.006357 pmid: 22418517
147 C Ge, M Lu, X Jian, Y Tan, B T Cunningham. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping. Optics Express, 2010, 18(12): 12980–12991
https://doi.org/10.1364/OE.18.012980 pmid: 20588427
148 X Liu, S Klinkhammer, K Sudau, N Mechau, C Vannahme, J Kaschke, T Mappes, M Wegener, U Lemmer. Ink-jet-printed organic semiconductor distributed feedback laser. Applied Physics Express, 2012, 5(7): 072101
https://doi.org/10.1143/APEX.5.072101
149 K Parafiniuk, C Monnereau, L Sznitko, B Mettra, M Zelechowska, C Andraud, A Miniewicz, J Mysliwiec. Distributed feedback lasing in amorphous polymers with covalently bonded fluorescent dyes: the influence of photoisomerization process. Macromolecules, 2017, 50(16): 6164–6173
https://doi.org/10.1021/acs.macromol.7b00878
150 M Karl, J M E Glackin, M Schubert, N M Kronenberg, G A Turnbull, I D W Samuel, M C Gather. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9(1): 1525
https://doi.org/10.1038/s41467-018-03874-w pmid: 29717120
151 E Namdas, M Tong, P Ledochowitsch, S R Mednick, J D Yuen, D Moses, A J Heeger. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 2009, 21(7): 799–802
https://doi.org/10.1002/adma.200802436
152 D Pisignano, L Persano, P Visconti, R Cingolani, G Gigli, G Barbarella, L Favaretto. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545–2547
https://doi.org/10.1063/1.1613362
153 P Del Carro, A Camposeo, R Stabile, E Mele, L Persano, R Cingolani, D Pisignano. Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89(20): 201105
https://doi.org/10.1063/1.2387974
154 J Chang, M Gwinner, M Caironi, T Sakanoue, H Sirringhaus. Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography. Advanced Functional Materials, 2010, 20(17): 2825–2832
https://doi.org/10.1002/adfm.201000436
155 V Berger, O Gauthier-Lafaye, E Costard. Photonic band gaps and holography. Journal of Applied Physics, 1997, 82(1): 60–64
https://doi.org/10.1063/1.365849
156 H Yoshioka, Y Yang, H Watanabe, Y Oki. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Optics Express, 2012, 20(4): 4690–4696
https://doi.org/10.1364/OE.20.004690 pmid: 22418226
157 S Chen, Y Zhou, T Zhai, Z Wang, D Liu. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9(8): 570–574
https://doi.org/10.7452/lapl.201210030
158 M Stroisch, T Woggon, U Lemmer, G Bastian, G Violakis, S Pissadakis. Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation. Optics Express, 2007, 15(7): 3968–3973
https://doi.org/10.1364/OE.15.003968 pmid: 19532640
159 T Zhai, X Zhang, Z Pang, F Dou. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
https://doi.org/10.1002/adma.201100250 pmid: 21374741
160 X Zhang, H Liu, H Li, T Zhai. Direct nanopatterning into conjugated polymers using interference crosslinking. Macromolecular Chemistry and Physics, 2012, 213(12): 1285–1290
https://doi.org/10.1002/macp.201200066
161 T Zhai, Y Lin, H Liu, S Feng, X Zhang. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures. Optics Express, 2013, 21(21): 24490–24496
https://doi.org/10.1364/OE.21.024490 pmid: 24150294
162 B Scott, G Wirnsberger, M McGehee, B Chmelka, G Stucky. Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Advanced Materials, 2001, 13(16): 1231–1234
https://doi.org/10.1002/1521-4095(200108)13:16<1231::AID-ADMA1231>3.0.CO;2-8
163 C Ge, M Lu, Y Tan, B T Cunningham. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Optics Express, 2011, 19(6): 5086–5092
https://doi.org/10.1364/OE.19.005086 pmid: 21445143
164 J Lawrence, G Turnbull, I Samuel. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
https://doi.org/10.1063/1.1579858
165 M Salerno, G Gigli, M Zavelani-Rossi, S Perissinotto, G Lanzani. Effects of morphology and optical contrast in organic distributed feedback lasers. Applied Physics Letters, 2007, 90(11): 111110
https://doi.org/10.1063/1.2713762
166 K Yamashita, N Takeuchi, K Oe, H Yanagi. Simultaneous RGB lasing from a single-chip polymer device. Optics Letters, 2010, 35(14): 2451–2453
https://doi.org/10.1364/OL.35.002451 pmid: 20634860
167 A J C Kuehne, M C Gather. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, 2016, 116(21): 12823–12864
https://doi.org/10.1021/acs.chemrev.6b00172 pmid: 27501192
168 I D Samuel, G A Turnbull. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272–1295
https://doi.org/10.1021/cr050152i pmid: 17385928
169 C Grivas, M Pollnau. Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 2012, 6(4): 419–462
https://doi.org/10.1002/lpor.201100034
170 G Heliotis, R Xia, D D C Bradley, G A Turnbull, I D W Samuel, P Andrew, W L Barnes. Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83(11): 2118–2120
https://doi.org/10.1063/1.1612903
171 H Jung, C Han, H Kim, K S Cho, Y G Roh, Y Park, H Jeon. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale, 2018, 10(48): 22745–22749
https://doi.org/10.1039/C8NR07854H pmid: 30516228
172 T Zhai, X Wu, F Tong, S Li, M Wang, X Zhang. Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109(26): 261906
https://doi.org/10.1063/1.4973505
173 C Karnutsch, C Pflumm, G Heliotis, J C deMello, D D C Bradley, J Wang, T Weimann, V Haug, C Gärtner, U Lemmer. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 2007, 90(13): 131104
https://doi.org/10.1063/1.2717518
174 C Karnutsch, C Gýrtner, V Haug, U Lemmer, T Farrell, B S Nehls, U Scherf, J Wang, T Weimann, G Heliotis, C Pflumm, J C deMello, D D C Bradley. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 2006, 89(20): 201108
https://doi.org/10.1063/1.2390644
175 T Zhai, F Tong, Y Wang, X Wu, S Li, M Wang, X Zhang. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Optics Express, 2016, 24(19): 22028–22033
https://doi.org/10.1364/OE.24.022028 pmid: 27661937
176 M Notomi, H Suzuki, T Tamamura, K Edagawa. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Physical Review Letters, 2004, 92(12): 123906
https://doi.org/10.1103/PhysRevLett.92.123906 pmid: 15089676
177 G Turnbull, P Andrew, W Barnes, I Samuel. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82(3): 313–315
https://doi.org/10.1063/1.1536249
178 J R Harwell, G L Whitworth, G A Turnbull, I D W Samuel. Green perovskite distributed feedback lasers. Scientific Reports, 2017, 7(1): 11727
https://doi.org/10.1038/s41598-017-11569-3 pmid: 28916798
179 F Prins, D K Kim, J Cui, E De Leo, L L Spiegel, K M McPeak, D J Norris. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Letters, 2017, 17(3): 1319–1325
https://doi.org/10.1021/acs.nanolett.6b03212 pmid: 28120610
180 W Cao, A Muñoz, P Palffy-Muhoray, B Taheri. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Materials, 2002, 1(2): 111–113
https://doi.org/10.1038/nmat727 pmid: 12618825
181 K Yoshino, S Tatsuhara, Y Kawagishi, M Ozaki, A A Zakhidov, Z V Vardeny. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Applied Physics Letters, 1999, 74(18): 2590–2592
https://doi.org/10.1063/1.123907
182 M Shkunov, Z Vardeny, M DeLong, R Polson, A Zakhidov, R Baughman. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Advanced Functional Materials, 2002, 12(1): 21–26
https://doi.org/10.1002/1616-3028(20020101)12:1<21::AID-ADFM21>3.0.CO;2-S
183 M H Kok, W Lu, W Y Tam, G K Wong. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Optics Express, 2009, 17(9): 7275–7284
https://doi.org/10.1364/OE.17.007275 pmid: 19399104
184 H Hirayama, T Hamano, Y Aoyagi. Novel surface emitting laser diode using photonic band-gap crystal cavity. Applied Physics Letters, 1996, 69(6): 791–793
https://doi.org/10.1063/1.117893
185 Y Yang, G A Turnbull, I D W Samuel. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 2008, 92(16): 163306
https://doi.org/10.1063/1.2912433
186 T Riedl, T Rabe, H H Johannes, W Kowalsky, J Wang, T Weimann, P Hinze, B Nehls, T Farrell, U Scherf. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88(24): 241116
https://doi.org/10.1063/1.2211947
187 E Heydari, J Buller, E Wischerhoff, A Laschewsky, S Döring, J Stumpe. Label-free biosensor based on an all‐polymer DFB laser. Advanced Optical Materials, 2014, 2(2): 137–141
https://doi.org/10.1002/adom.201300454
188 A M Haughey, B Guilhabert, A L Kanibolotsky, P J Skabara, M D Dawson, G A Burley, N Laurand. An oligofluorene truxene based distributed feedback laser for biosensing applications. Biosensors & Bioelectronics, 2014, 54: 679–686
https://doi.org/10.1016/j.bios.2013.11.054 pmid: 24355421
189 F Cao, S Zhang, J Tong, C Chen, L Niu, T Zhai, X Zhang. Effects of cavity structure on tuning properties of polymer lasers in a liquid environment. Polymers, 2019, 11(2): 329
https://doi.org/10.3390/polym11020329 pmid: 30960313
190 D Schneider, T Rabe, T Riedl, T Dobbertin, M Kröger, E Becker, H H Johannes, W Kowalsky, T Weimann, J Wang, P Hinze, A Gerhard, P Stössel, H Vestweber. An ultraviolet organic thin-film solid-state laser for biomarker applications. Advanced Materials, 2005, 17(1): 31–34
191 A Retolaza, J Martinez-Perdiguero, S Merino, M Morales-Vidal, P G Boj, J A Quintana, J M Villalvilla, M A Díaz-García. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B, Chemical, 2016, 223: 261–265
https://doi.org/10.1016/j.snb.2015.09.093
192 Y Oki, S Miyamoto, M Maeda, N J Vasa. Multiwavelength distributed-feedback dye laser array and its application to spectroscopy. Optics Letters, 2002, 27(14): 1220–1222
https://doi.org/10.1364/OL.27.001220 pmid: 18026408
193 T Voss, D Scheel, W Schade. A microchip-laser-pumped DFB-polymer-dye laser. Applied Physics B, Lasers and Optics, 2001, 73(2): 105–109
https://doi.org/10.1007/s003400100619
194 M B Christiansen, M Schøler, A Kristensen. Integration of active and passive polymer optics. Optics Express, 2007, 15(7): 3931–3939
https://doi.org/10.1364/OE.15.003931 pmid: 19532635
195 C Vannahme, S Klinkhammer, U Lemmer, T Mappes. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 2011, 19(9): 8179–8186
https://doi.org/10.1364/OE.19.008179 pmid: 21643068
196 E Toussaere, N Bouadma, J Zyss. Monolithic integrated four DFB lasers array with a polymer-based combiner for WDM applications. Optical Materials, 1998, 9(1–4): 255–258
https://doi.org/10.1016/S0925-3467(97)00117-1
197 H Ma, Y Jen, L R Dalton. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339–1365
https://doi.org/10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O
Related articles from Frontiers Journals
[1] Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review[J]. Front. Optoelectron., 2020, 13(1): 50-72.
[2] Xuepeng ZHAN,Huailiang XU,Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Front. Optoelectron., 2016, 9(3): 420-427.
[3] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[4] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[5] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[6] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed