Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics

Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN

PDF(1613 KB)
PDF(1613 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (1) : 12-17. DOI: 10.1007/s12200-019-0941-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics

Author information +
History +

Abstract

Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated. In this paper, we report holographic fabrication of graded photonic super-crystal with eight graded lattice clusters surrounding the central non-gradient lattices through pixel-by-pixel phase engineering in a spatial light modulator. The prospect of applications of octagon graded photonic super-crystal in topological photonics is discussed through photonic band gap engineering and coupled ring resonators.

Keywords

2D photonic crystal / graded photonic super-crystal / holographic fabrication / photonic band structure

Cite this article

Download citation ▾
Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics. Front. Optoelectron., 2020, 13(1): 12‒17 https://doi.org/10.1007/s12200-019-0941-2

References

[1]
Chanda D, Abolghasemi L E, Haque M, Ng M L, Herman P R. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals. Optics Express, 2008, 16(20): 15402–15414
CrossRef Pubmed Google scholar
[2]
Ohlinger K, Zhang H, Lin Y, Xu D, Chen K P. A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication. Optical Materials Express, 2011, 1(5): 1034–1039
CrossRef Google scholar
[3]
Leach J, Wulff K, Sinclair G, Jordan P, Courtial J, Thomson L, Gibson G, Karunwi K, Cooper J, Laczik Z J, Padgett M. Interactive approach to optical tweezers control. Applied Optics, 2006, 45(5): 897–903
CrossRef Pubmed Google scholar
[4]
Xavier J, Dasgupta R, Ahlawat S, Joseph J, Gupta P K. Three dimensional optical twisters-driven helically-stacked multi-layered microrotors. Applied Physics Letters, 2012, 100(12): 121101
CrossRef Google scholar
[5]
Zito G, Piccirillo B, Santamato E, Marino A, Tkachenko V, Abbate G. Two-dimensional photonic quasicrystals by single beam computer-generated holography. Optics Express, 2008, 16(8): 5164–5170
CrossRef Pubmed Google scholar
[6]
Jenness N J, Wulff K D, Johannes M S, Padgett M J, Cole D G, Clark R L. Three-dimensional parallel holographic micropatterning using a spatial light modulator. Optics Express, 2008, 16(20): 15942–15948
CrossRef Pubmed Google scholar
[7]
Arrizón V, de-la-Llave D S, Méndez G, Ruiz U. Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms. Optics Express, 2011, 19(11): 10553–10562
CrossRef Pubmed Google scholar
[8]
Xavier J, Rose P, Terhalle B, Joseph J, Denz C. Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices. Optics Letters, 2009, 34(17): 2625–2627
CrossRef Pubmed Google scholar
[9]
Xavier J, Joseph J. Tunable complex photonic chiral lattices by reconfigurable optical phase engineering. Optics Letters, 2011, 36(3): 403–405
CrossRef Pubmed Google scholar
[10]
Xavier J, Vyas S, Senthilkumaran P, Denz C, Joseph J. Sculptured 3D twister superlattices embedded with tunable vortex spirals. Optics Letters, 2011, 36(17): 3512–3514
CrossRef Pubmed Google scholar
[11]
Behera S, Joseph J. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures. Optics Letters, 2016, 41(15): 3579–3582
CrossRef Pubmed Google scholar
[12]
Lutkenhaus J, George D, Moazzezi M, Philipose U, Lin Y. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask. Optics Express, 2013, 21(22): 26227–26235
CrossRef Pubmed Google scholar
[13]
Kumar M, Joseph J. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator. Applied Physics Letters, 2014, 105(5): 051102
CrossRef Google scholar
[14]
Rumpf R C, Pazos J. Synthesis of spatially variant lattices. Optics Express, 2012, 20(14): 15263–15274
CrossRef Pubmed Google scholar
[15]
Digaum J L, Pazos J J, Chiles J, D’Archangel J, Padilla G, Tatulian A, Rumpf R C, Fathpour S, Boreman G D, Kuebler S M. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Optics Express, 2014, 22(21): 25788–25804
CrossRef Pubmed Google scholar
[16]
Lutkenhaus J, George D, Lowell D, Arigong B, Zhang H, Lin Y. Registering functional defects into periodic holographic structures. Applied Optics, 2015, 54(23): 7007–7012
CrossRef Pubmed Google scholar
[17]
Lutkenhaus J, Lowell D, George D, Zhang H, Lin Y. Holographic fabrication of designed functional defect lines in photonic crystal lattice using a spatial light modulator. Micromachines, 2016, 7(4): 59
CrossRef Pubmed Google scholar
[18]
Lowell D, Lutkenhaus J, George D, Philipose U, Chen B, Lin Y. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry. Optics Express, 2017, 25(13): 14444–14452
CrossRef Pubmed Google scholar
[19]
Lowell D, Hassan S, Sale O, Adewole M, Hurley N, Philipose U, Chen B, Lin Y. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Applied Optics, 2018, 57(22): 6598–6604
CrossRef Pubmed Google scholar
[20]
Lowell D, Hassan S, Adewole M, Philipose U, Chen B, Lin Y. Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Applied Optics, 2017, 56(36): 9888
CrossRef Google scholar
[21]
Hassan S, Sale O, Lowell D, Hurley N, Lin Y. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 2018, 5(4): 34
CrossRef Google scholar
[22]
Ge X, Minkov M, Fan S, Li X, Zhou W. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling. Applied Physics Letters, 2018, 112(14): 141105
CrossRef Google scholar
[23]
Hassan S, Lowell D, Lin Y. High light extraction efficiency into glass substrate in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis. Journal of Applied Physics, 2017, 121(23): 233104
CrossRef Google scholar
[24]
Hassan S, Alnasser K, Lowell D, Lin Y. Effects of photonic band structure and unit super-cell size in graded photonic super-crystal on broadband light absorption in silicon. Photonics, 2019, 6(2): 50
CrossRef Google scholar
[25]
Lu L, Joannopoulos J D, Soljačić M. Topological photonics. Nature Photonics, 2014, 8(11): 821–829
CrossRef Google scholar
[26]
Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M. Topological insulator laser: experiments. Science, 2018, 359: 4005
[27]
Ao Y, Hu X, Li C, You Y, Gong Q. Topological properties of coupled resonator array based on accurate band structure. Physical Review Materials, 2018, 2(10): 105201
CrossRef Google scholar

Funding Information

National Science Foundation (NSF) (Nos. 1661842 and 1661749).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1613 KB)

Accesses

Citations

Detail

Sections
Recommended

/