Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2020, Vol. 13 Issue (1) : 12-17
Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics
Oliver SALE1, Safaa HASSAN1, Noah HURLEY1, Khadijah ALNASSER1, Usha PHILIPOSE1, Hualiang ZHANG2, Yuankun LIN1,3()
1. Department of Physics, University of North Texas, Denton, TX 76203, USA
2. ECE Department, University of Massachusetts Lowell, Lowell, MA 01854, USA
3. Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
Download: PDF(1613 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated. In this paper, we report holographic fabrication of graded photonic super-crystal with eight graded lattice clusters surrounding the central non-gradient lattices through pixel-by-pixel phase engineering in a spatial light modulator. The prospect of applications of octagon graded photonic super-crystal in topological photonics is discussed through photonic band gap engineering and coupled ring resonators.

Keywords 2D photonic crystal      graded photonic super-crystal      holographic fabrication      photonic band structure     
Corresponding Authors: Yuankun LIN   
Online First Date: 23 September 2019    Issue Date: 03 April 2020
 Cite this article:   
Oliver SALE,Safaa HASSAN,Noah HURLEY, et al. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
E-mail this article
E-mail Alert
Articles by authors
Oliver SALE
Hualiang ZHANG
Yuankun LIN
Fig.1  (a) Designed phase pattern in a unit cell indicated by the solid red square. The pixels were assigned with different gray level pairs in checkerboard format in regions (I) and (II). Lines indicate the periodic unit for the diffraction. (b) Optical image of diffraction pattern of 532 nm laser from the phase pattern in SLM. 12 beams, indicated by red circles, pass through the Fourier filter for multi-beam interference. The cell-phone camera was tilted to avoid the back-reflection spots
Fig.2  Schematic of the optical setup for the holographic fabrication of octagon GPSC. The diffracted beams from the phase pattern displayed in SLM are filtered at the Fourier Plane and form interference patterns through 4f imaging system. θ1 and θ2 are the first order diffraction angles due to the periodic array of 2 pixels, 24 pixels, respectively. α1 and α2 (zenith angle) are the interfering angles of 1−4 beams and 5−12 beams in Fig. 1(b), respectively
Fig.3  (a) Simulated 12-beam interference pattern with 8 graded regions forming octagon and surrounding the central almost uniform region. The yellow square indicates the unit super-cell. (b) Scanning electron microscope (SEM) image of a fabricated sample where the 8 graded regions are connected by a dashed red octagon. The solid red square indicates the unit super-cell and both squares indicate a square symmetry. A lattice spacing parameter L = 4 µm. (c) Diffraction pattern of fabricated sample from 532 nm laser. An insert inside the dashed white square is a copy of pattern in the central region with 5 squares for eye guidance purpose. The yellow octagon is for eye guidance
Fig.4  (a) and (b) Simulated electric field distributions in the boundary of graded and uniform regions. (c) Possible side and link ring formation in octagon GPSCs
1 D Chanda, L E Abolghasemi, M Haque, M L Ng, P R Herman. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals. Optics Express, 2008, 16(20): 15402–15414 pmid: 18825176
2 K Ohlinger, H Zhang, Y Lin, D Xu, K P Chen. A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication. Optical Materials Express, 2011, 1(5): 1034–1039
3 J Leach, K Wulff, G Sinclair, P Jordan, J Courtial, L Thomson, G Gibson, K Karunwi, J Cooper, Z J Laczik, M Padgett. Interactive approach to optical tweezers control. Applied Optics, 2006, 45(5): 897–903 pmid: 16512531
4 J Xavier, R Dasgupta, S Ahlawat, J Joseph, P K Gupta. Three dimensional optical twisters-driven helically-stacked multi-layered microrotors. Applied Physics Letters, 2012, 100(12): 121101
5 G Zito, B Piccirillo, E Santamato, A Marino, V Tkachenko, G Abbate. Two-dimensional photonic quasicrystals by single beam computer-generated holography. Optics Express, 2008, 16(8): 5164–5170 pmid: 18542617
6 N J Jenness, K D Wulff, M S Johannes, M J Padgett, D G Cole, R L Clark. Three-dimensional parallel holographic micropatterning using a spatial light modulator. Optics Express, 2008, 16(20): 15942–15948 pmid: 18825231
7 V Arrizón, D S de-la-Llave, G Méndez, U Ruiz. Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms. Optics Express, 2011, 19(11): 10553–10562 pmid: 21643309
8 J Xavier, P Rose, B Terhalle, J Joseph, C Denz. Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices. Optics Letters, 2009, 34(17): 2625–2627 pmid: 19724512
9 J Xavier, J Joseph. Tunable complex photonic chiral lattices by reconfigurable optical phase engineering. Optics Letters, 2011, 36(3): 403–405 pmid: 21283204
10 J Xavier, S Vyas, P Senthilkumaran, C Denz, J Joseph. Sculptured 3D twister superlattices embedded with tunable vortex spirals. Optics Letters, 2011, 36(17): 3512–3514 pmid: 21886261
11 S Behera, J Joseph. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures. Optics Letters, 2016, 41(15): 3579–3582 pmid: 27472623
12 J Lutkenhaus, D George, M Moazzezi, U Philipose, Y Lin. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask. Optics Express, 2013, 21(22): 26227–26235 pmid: 24216847
13 M Kumar, J Joseph. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator. Applied Physics Letters, 2014, 105(5): 051102
14 R C Rumpf, J Pazos. Synthesis of spatially variant lattices. Optics Express, 2012, 20(14): 15263–15274 pmid: 22772224
15 J L Digaum, J J Pazos, J Chiles, J D’Archangel, G Padilla, A Tatulian, R C Rumpf, S Fathpour, G D Boreman, S M Kuebler. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Optics Express, 2014, 22(21): 25788–25804 pmid: 25401613
16 J Lutkenhaus, D George, D Lowell, B Arigong, H Zhang, Y Lin. Registering functional defects into periodic holographic structures. Applied Optics, 2015, 54(23): 7007–7012 pmid: 26368368
17 J Lutkenhaus, D Lowell, D George, H Zhang, Y Lin. Holographic fabrication of designed functional defect lines in photonic crystal lattice using a spatial light modulator. Micromachines, 2016, 7(4): 59 pmid: 30407432
18 D Lowell, J Lutkenhaus, D George, U Philipose, B Chen, Y Lin. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry. Optics Express, 2017, 25(13): 14444–14452 pmid: 28789030
19 D Lowell, S Hassan, O Sale, M Adewole, N Hurley, U Philipose, B Chen, Y Lin. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Applied Optics, 2018, 57(22): 6598–6604 pmid: 30117901
20 D Lowell, S Hassan, M Adewole, U Philipose, B Chen, Y Lin. Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Applied Optics, 2017, 56(36): 9888
21 S Hassan, O Sale, D Lowell, N Hurley, Y Lin. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 2018, 5(4): 34
22 X Ge, M Minkov, S Fan, X Li, W Zhou. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling. Applied Physics Letters, 2018, 112(14): 141105
23 S Hassan, D Lowell, Y Lin. High light extraction efficiency into glass substrate in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis. Journal of Applied Physics, 2017, 121(23): 233104
24 S Hassan, K Alnasser, D Lowell, Y Lin. Effects of photonic band structure and unit super-cell size in graded photonic super-crystal on broadband light absorption in silicon. Photonics, 2019, 6(2): 50
25 L Lu, J D Joannopoulos, M Soljačić. Topological photonics. Nature Photonics, 2014, 8(11): 821–829
26 M A Bandres, S Wittek, G Harari , M Parto, J Ren, M Segev, D N Christodoulides, M Khajavikhan. Topological insulator laser: experiments. Science, 2018, 359: 4005
27 Y Ao, X Hu, C Li, Y You, Q Gong. Topological properties of coupled resonator array based on accurate band structure. Physical Review Materials, 2018, 2(10): 105201
Full text