Antimony doped Cs2SnCl6 with bright and stable emission

Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG

PDF(3339 KB)
PDF(3339 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (4) : 352-364. DOI: 10.1007/s12200-019-0907-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Antimony doped Cs2SnCl6 with bright and stable emission

Author information +
History +

Abstract

Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4:Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.

Keywords

perovskite / lead-free / antimony doping / orange-red emission

Cite this article

Download citation ▾
Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron., 2019, 12(4): 352‒364 https://doi.org/10.1007/s12200-019-0907-4

References

[1]
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
CrossRef Pubmed Google scholar
[2]
Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8: 15640
CrossRef Pubmed Google scholar
[3]
Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
CrossRef Pubmed Google scholar
[4]
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef Pubmed Google scholar
[5]
Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584
CrossRef Google scholar
[6]
Zhang H, Wang X, Liao Q, Xu Z, Li H, Zheng L, Fu H. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7): 1604382
CrossRef Google scholar
[7]
Ge R, Qin F, Hu L, Xiong S, Zhou Y. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11(4): 360–366
CrossRef Google scholar
[8]
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
CrossRef Pubmed Google scholar
[9]
Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
CrossRef Pubmed Google scholar
[10]
Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
CrossRef Pubmed Google scholar
[11]
Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello A J, Kovalenko M V. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869–1877
CrossRef Pubmed Google scholar
[12]
Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials, 2018, 30(30): e1800764
CrossRef Pubmed Google scholar
[13]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696
CrossRef Pubmed Google scholar
[14]
Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533–4542
CrossRef Pubmed Google scholar
[15]
Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
CrossRef Google scholar
[16]
Wei Y, Xiao H, Xie Z, Liang S, Liang S, Cai X, Huang S, Al Kheraif A A, Jang H S, Cheng Z, Lin J. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 2018, 6(11): 1701343
CrossRef Google scholar
[17]
Huang S, Wang B, Zhang Q, Li Z, Shan A, Li L. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Advanced Optical Materials, 2018, 6(6): 1701106
CrossRef Google scholar
[18]
Yang S, Fu W, Zhang Z, Chen H, Li C. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482
CrossRef Google scholar
[19]
Leng M, Chen Z, Yang Y, Li Z, Zeng K, Li K, Niu G, He Y, Zhou Q, Tang J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie, 2016, 55(48): 15012–15016
CrossRef Pubmed Google scholar
[20]
Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11(9): 9294–9302
CrossRef Pubmed Google scholar
[21]
Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446
CrossRef Google scholar
[22]
Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083
CrossRef Pubmed Google scholar
[23]
Zhou C, Lin H, Tian Y, Yuan Z, Clark R, Chen B, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586–593
CrossRef Pubmed Google scholar
[24]
Zhou C, Worku M, Neu J, Lin H, Tian Y, Lee S, Zhou Y, Han D, Chen S, Hao A, Djurovich P I, Siegrist T, Du M H, Ma B. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374–2378
CrossRef Google scholar
[25]
Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M, Klimov V I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961
CrossRef Pubmed Google scholar
[26]
Hu Q, Li Z, Tan Z, Song H, Ge C, Niu G, Han J, Tang J. Rare earth ion-doped CsPbBr3 nanocrystals. Advanced Optical Materials, 2018, 6(2): 1700864
CrossRef Google scholar
[27]
Zhou C, Tian Y, Khabou O, Worku M, Zhou Y, Hurley J, Lin H, Ma B. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions. ACS Applied Materials & Interfaces, 2017, 9(46): 40446–40451
CrossRef Pubmed Google scholar
[28]
Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
CrossRef Google scholar
[29]
Costa D, Marcus P. Electronic core levels of hydroxyls at the surface of chromia related to their XPS O 1s signature: a DFT+ U study. Surface Science, 2010, 604(11–12): 932–938
CrossRef Google scholar
[30]
Hwang S M, Kim J, Kim Y, Kim Y. Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(46): 17946–17951
CrossRef Google scholar
[31]
Yang X, Ma J, Wang H, Chai Y, Yuan R. Partially reduced Sb/Sb2O3@C spheres with enhanced electrochemical performance for lithium ion storage. Materials Chemistry and Physics, 2018, 213: 208–212
CrossRef Google scholar
[32]
Ali A, Hasanain S K, Ali T, Sultan M. Improvement of antimony sulfide photo bsorber performance by interface modification in Sb2S3-ZnO hybrid nanostructures. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 87: 20–26
CrossRef Google scholar
[33]
Yang P, Deng P, Yin Z. Concentration quenching in Yb:YAG. Journal of Luminescence, 2002, 97(1): 51–54
CrossRef Google scholar
[34]
Oomen E W J L, Dirksen G J, Smit W M A, Blasse G. On the luminescence of the Sb3+ ion in Cs2NaMBr6 (M=Sc,Y,La). Journal of Physics C. Solid State Physics, 1987, 20(8): 1161–1171
CrossRef Google scholar
[35]
Oomen E W J L, Smit W M A, Blasse G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M=Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics C. Solid State Physics, 1986, 19(17): 3263–3272
CrossRef Google scholar
[36]
Reisfeld R, Boehm L, Barnett B. Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses. Journal of Solid State Chemistry, 1975, 15(2): 140–150
CrossRef Google scholar
[37]
Zhou G, Jiang X, Zhao J, Molokeev M, Lin Z, Liu Q, Xia Z. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A= K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Applied Materials & Interfaces, 2018, 10(29): 24648–24655
CrossRef Pubmed Google scholar
[38]
Oomen E W J L, Dirksen G J. Crystal growth and luminescence of Sb3+-doped Cs2 NaMCl6 (M= Sc, Y, La). Materials Research Bulletin, 1985, 20(4): 453–457
CrossRef Google scholar
[39]
Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer, 1994
[40]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172
CrossRef Pubmed Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51761145048, 61725401 and 51702107), the National Key R&D Program of China (No. 2016YFB0700702) and the China Postdoctoral Science Foundation (No. 2018M632843). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO. The work at Tokyo Institute of Technology was conducted under the Tokodai Institute for Element Strategy (TIES) funded by the MEXT Elements Strategy Initiative to Form Core Research Center.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3339 KB)

Accesses

Citations

Detail

Sections
Recommended

/