Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2019, Vol. 12 Issue (4) : 344-351     https://doi.org/10.1007/s12200-019-0904-7
RESEARCH ARTICLE
Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells
Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG(), Hongwei HAN
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(1059 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). Particularly, we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon. The deposition of the scaffold is entirely based on screen printing process, which provides a promising prospect for low-cost photovoltaics. However, the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films. Here, we tune the concentration of the pastes and the printing parameters for coating TiO2 films, and successfully print TiO2 films with the thickness of 500−550 nm. The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes, the printing speed and pressure, and the temperature has been investigated. Besides, the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied. This work will significantly benefit the further development of printable mesoscopic PSCs.

Keywords screen printing      perovskite solar cells (PSCs)      thickness      parameter control     
Corresponding Authors: Yaoguang RONG   
Just Accepted Date: 07 March 2019   Online First Date: 29 April 2019    Issue Date: 30 December 2019
 Cite this article:   
Zhining WAN,Mi XU,Zhengyang FU, et al. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-019-0904-7
http://journal.hep.com.cn/foe/EN/Y2019/V12/I4/344
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhining WAN
Mi XU
Zhengyang FU
Da LI
Anyi MEI
Yue HU
Yaoguang RONG
Hongwei HAN
Fig.1  (a) Scheme of the fabrication process of printable mesoscopic PSCs; (b) structure of the printable mesoscopic PSC submodules with series-connections; (c) cross-sectional SEM image of the screen printed scaffold
Fig.2  (a) Thickness variations of the screen printed TiO2 layer with different paste/terpineol mass ratio; (b) statistical distributions of the thickness
Fig.3  (a) Dependence of viscosity of the TiO2 paste on paste/terpineol mass ratio; (b) dependence of viscosity of the TiO2 paste on temperature; (c) dependence of the TiO2 layer thickness on the viscosity; (d) dependence of the TiO2 layer thickness on the solid content
Fig.4  (a) Dependence of the film thickness on print speed; (b) dependence of the film thickness on print gap; (c) dependence of the film thickness on print pressure
Fig.5  (a) Positional accuracy for printing the TiO2 films; (b) microscopy image of the edge of printed TiO2 films on FTO substrate; (c) length accuracy for printing the TiO2 films; (d) edge effect of the printed TiO2 films
1 Y Rong, Y Ming, W Ji, D Li, A Mei, Y Hu, H Han. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707–2713
https://doi.org/10.1021/acs.jpclett.8b00912 pmid: 29738259
2 M R Somalu, A Muchtar, W R W Daud, N P Brandon. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable & Sustainable Energy Reviews, 2017, 75: 426–439
https://doi.org/10.1016/j.rser.2016.11.008
3 F Miller L. Paste Transfer in the Screening Process. SAE Technical Paper Series, 1968, 680796
4 Towards a better understanding of screen print thickness control: R. J. Horwood. Electrocomponent Science and Technology. 1, 129 (1974). Microelectronics Reliability, 1975, 14(3): 284
5 M Späth, P M Sommeling, J A M van Roosmalen, H J P Smit, N P G van der Burg, D R Mahieu, N J Bakker, J M Kroon. Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progress in Photovoltaics: Research and Applications, 2003, 11(3): 207–220
https://doi.org/10.1002/pip.481
6 S R Wenham, M A Green. Silicon solar cells. Progress in Photovoltaics: Research and Applications, 1996, 4(1): 3–33
https://doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<3::AID-PIP117>3.0.CO;2-S
7 S Ito, T N Murakami, P Comte, P Liska, C Grätzel, M K Nazeeruddin, M Grätzel. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619
https://doi.org/10.1016/j.tsf.2007.05.090
8 B, O'Regan M. Grätzel A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740
9 A Hagfeldt, G Boschloo, L Sun, L Kloo, H Pettersson. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
https://doi.org/10.1021/cr900356p pmid: 20831177
10 A Hinsch, H Brandt, W Veurman, S Hemming, M Nittel, U Würfel, P Putyra, C Lang-Koetz, M Stabe, S Beucker. Dye solar modules for facade applications: recent results from project ColorSol. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 820–824
https://doi.org/10.1016/j.solmat.2008.09.049
11 A Hinsch, W Veurman, H Brandt, R Loayza Aguirre, K Bialecka, K Flarup Jensen. Worldwide first fully up-scaled fabrication of 60 × 100 cm2 dye solar module prototypes. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 698–710
https://doi.org/10.1002/pip.1213
12 H Pettersson, T Gruszecki, C Schnetz, M Streit, Y Xu, L Sun, M Gorlov, L Kloo, G Boschloo, L Häggman, A Hagfeldt. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345
https://doi.org/10.1002/pip.971
13 Y, Rong G, Liu H, Wang X, Li H. Han Monolithic all-solid-state dye-sensitized solar cells. Frontiers of Optoelectronics, 2013, 6(4): 359–372
https://doi.org/10.1007/s12200-013-0346-6
14 N Kato, Y Takeda, K Higuchi, A Takeichi, E Sudo, H Tanaka, T Motohiro, T Sano, T Toyoda. Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 893–897
https://doi.org/10.1016/j.solmat.2008.10.022
15 S Dai, J Weng, Y Sui, S Chen, S Xiao, Y Huang, F Kong, X Pan, L Hu, C Zhang, K Wang. The design and outdoor application of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361(3): 786–791
https://doi.org/10.1016/j.ica.2007.04.018
16 Y Takeda, N Kato, K Higuchi, A Takeichi, T Motohiro, S Fukumoto, T Sano, T Toyoda. Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 808–811
https://doi.org/10.1016/j.solmat.2008.09.054
17 A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r pmid: 19366264
18 H S Kim, C R Lee, J H Im, K B Lee, T Moehl, A Marchioro, S J Moon, R Humphry-Baker, J H Yum, J E Moser, M Grätzel, N G Park. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1): 591
https://doi.org/10.1038/srep00591 pmid: 22912919
19 W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301 pmid: 28663498
20 D Bi, C Yi, J Luo, J D Décoppet, F Zhang, S M Zakeeruddin, X Li, A Hagfeldt, M Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142
https://doi.org/10.1038/nenergy.2016.142
21 Y, Rong Y, Hu A, Mei H, Tan M I, Saidaminov S I, Seok M D, McGehee E H, Sargent H. Han Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaata8235
https://doi.org/10.1126/science.aat8235
22 M A Green, Y Hishikawa, E D Dunlop, D H Levi, J Hohl-Ebinger, M Yoshita, A W Y Ho-Baillie. Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12
https://doi.org/10.1002/pip.3102
23 Y Rong, L Liu, A Mei, X Li, H Han. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
https://doi.org/10.1002/aenm.201501066
24 Y, Hu S, Si A, Mei Y, Rong H, Liu X, Li H. Han Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL, 2017, 1(2): 1600019
https://doi.org/10.1002/solr.201600019
25 Y Rong, X Hou, Y Hu, A Mei, L Liu, P Wang, H Han. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8: 14555
https://doi.org/10.1038/ncomms14555 pmid: 28240286
26 G Yin, J Ma, H Jiang, J Li, D Yang, F Gao, J Zeng, Z Liu, S F Liu. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Applied Materials & Interfaces, 2017, 9(16): 14545
https://doi.org/10.1021/acsami.7b04738 pmid: 28414211
27 Y Jiang, M R Leyden, L Qiu, S Wang, L K Ono, Z Wu, E J Juarez-Perez, Y Qi. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials, 2018, 28(1): 1703835
https://doi.org/10.1002/adfm.201703835
28 D Yang, R Yang, J Zhang, Z Yang, S Liu, C Li. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy & Environmental Science, 2015, 8(11): 3208–3214
https://doi.org/10.1039/C5EE02155C
29 K Wang, W Zhao, J Liu, J Niu, Y Liu, X Ren, J Feng, Z Liu, J Sun, D Wang, S F Liu. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9(39): 33989–33996
https://doi.org/10.1021/acsami.7b11329 pmid: 28914052
30 T Liu, K Chen, Q Hu, R Zhu, Q Gong. Inverted perovskite solar cells: progresses and perspectives. Advanced Energy Materials, 2016, 6(17): 1600457
https://doi.org/10.1002/aenm.201600457
31 D Luo, W Yang, Z Wang, A Sadhanala, Q Hu, R Su, R Shivanna, G F Trindade, J F Watts, Z Xu, T Liu, K Chen, F Ye, P Wu, L Zhao, J Wu, Y Tu, Y Zhang, X Yang, W Zhang, R H Friend, Q Gong, H J Snaith, R Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446
https://doi.org/10.1126/science.aap9282 pmid: 29954975
32 Z Ku, Y Rong, M Xu, T Liu, H Han. Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132
https://doi.org/10.1038/srep03132 pmid: 24185501
33 F De Rossi, J A Baker, D Beynon, K E A Hooper, S M P Meroni, D Williams, Z Wei, A Yasin, C Charbonneau, E H Jewell, T M Watson. All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency. Advanced Materials Technologies, 2018, 3(11): 1800156
https://doi.org/10.1002/admt.201800156
34 A K Baranwal, S Kanaya, T A N Peiris, G Mizuta, T Nishina, H Kanda, T Miyasaka, H Segawa, S Ito. 100°C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem, 2016, 9(18): 2604–2608
https://doi.org/10.1002/cssc.201600933 pmid: 27629068
35 G Grancini, C Roldán-Carmona, I Zimmermann, E Mosconi, X Lee, D Martineau, S Narbey, F Oswald, F De Angelis, M Graetzel, M K Nazeeruddin. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684
https://doi.org/10.1038/ncomms15684 pmid: 28569749
36 C Y Chan, Y Wang, G W Wu, E Wei-Guang Diau. Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(10): 3872–3878
https://doi.org/10.1039/C6TA00912C
37 T Liu, L Liu, M Hu, Y Yang, L Zhang, A Mei, H Han. Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538
https://doi.org/10.1016/j.jpowsour.2015.05.106
38 R D Deegan, O Bakajin, T F Dupont, G Huber, S R Nagel, T A Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
https://doi.org/10.1038/39827
39 H W Lin, C P Chang, W H Hwu, M D Ger. The rheological behaviors of screen-printing pastes. Journal of Materials Processing Technology, 2008, 197(1–3): 284–291
https://doi.org/10.1016/j.jmatprotec.2007.06.067
Related articles from Frontiers Journals
[1] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[2] Guangli WANG, Yi SHI, Lijia PAN, Lin PU, Jin LV, Rong ZHANG, Youdou ZHENG. Charge trapping memory devices employing multi-layered Ge/Si nanocrystals for storage fabricated with ALD and PLD methods[J]. Front Optoelec Chin, 2011, 4(2): 146-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed