Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells
Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN
Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells
Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). Particularly, we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon. The deposition of the scaffold is entirely based on screen printing process, which provides a promising prospect for low-cost photovoltaics. However, the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films. Here, we tune the concentration of the pastes and the printing parameters for coating TiO2 films, and successfully print TiO2 films with the thickness of 500−550 nm. The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes, the printing speed and pressure, and the temperature has been investigated. Besides, the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied. This work will significantly benefit the further development of printable mesoscopic PSCs.
screen printing / perovskite solar cells (PSCs) / thickness / parameter control
[1] |
Rong Y, Ming Y, Ji W, Li D, Mei A, Hu Y, Han H. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707–2713
CrossRef
Pubmed
Google scholar
|
[2] |
Somalu M R, Muchtar A, Daud W R W, Brandon N P. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable & Sustainable Energy Reviews, 2017, 75: 426–439
CrossRef
Google scholar
|
[3] |
Miller F L. Paste Transfer in the Screening Process. SAE Technical Paper Series, 1968, 680796
|
[4] |
Towards a better understanding of screen print thickness control: R. J. Horwood. Electrocomponent Science and Technology. 1, 129 (1974). Microelectronics Reliability, 1975, 14(3): 284
|
[5] |
Späth M, Sommeling P M, van Roosmalen J A M, Smit H J P, van der Burg N P G, Mahieu D R, Bakker N J, Kroon J M. Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progress in Photovoltaics: Research and Applications, 2003, 11(3): 207–220
CrossRef
Google scholar
|
[6] |
Wenham S R, Green M A. Silicon solar cells. Progress in Photovoltaics: Research and Applications, 1996, 4(1): 3–33
CrossRef
Google scholar
|
[7] |
Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K, Grätzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619
CrossRef
Google scholar
|
[8] |
O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740
|
[9] |
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
CrossRef
Pubmed
Google scholar
|
[10] |
Hinsch A, Brandt H, Veurman W, Hemming S, Nittel M, Würfel U, Putyra P, Lang-Koetz C, Stabe M, Beucker S. Dye solar modules for facade applications: recent results from project ColorSol. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 820–824
CrossRef
Google scholar
|
[11] |
Hinsch A, Veurman W, Brandt H, Loayza Aguirre R, Bialecka K, Flarup Jensen K. Worldwide first fully up-scaled fabrication of 60 × 100 cm2 dye solar module prototypes. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 698–710
CrossRef
Google scholar
|
[12] |
Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y, Sun L, Gorlov M, Kloo L, Boschloo G, Häggman L, Hagfeldt A. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345
CrossRef
Google scholar
|
[13] |
Rong Y, Liu G, Wang H, Li X, Han H. Monolithic all-solid-state dye-sensitized solar cells. Frontiers of Optoelectronics, 2013, 6(4): 359–372
CrossRef
Google scholar
|
[14] |
Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T. Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 893–897
CrossRef
Google scholar
|
[15] |
Dai S, Weng J, Sui Y, Chen S, Xiao S, Huang Y, Kong F, Pan X, Hu L, Zhang C, Wang K. The design and outdoor application of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361(3): 786–791
CrossRef
Google scholar
|
[16] |
Takeda Y, Kato N, Higuchi K, Takeichi A, Motohiro T, Fukumoto S, Sano T, Toyoda T. Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 808–811
CrossRef
Google scholar
|
[17] |
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
CrossRef
Pubmed
Google scholar
|
[18] |
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1): 591
CrossRef
Pubmed
Google scholar
|
[19] |
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
CrossRef
Pubmed
Google scholar
|
[20] |
Bi D, Yi C, Luo J, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142
CrossRef
Google scholar
|
[21] |
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaata8235
CrossRef
Google scholar
|
[22] |
Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y. Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12
CrossRef
Google scholar
|
[23] |
Rong Y, Liu L, Mei A, Li X, Han H. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
CrossRef
Google scholar
|
[24] |
Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL, 2017, 1(2): 1600019
CrossRef
Google scholar
|
[25] |
Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P, Han H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8: 14555
CrossRef
Pubmed
Google scholar
|
[26] |
Yin G, Ma J, Jiang H, Li J, Yang D, Gao F, Zeng J, Liu Z, Liu S F. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Applied Materials & Interfaces, 2017, 9(16): 14545
CrossRef
Pubmed
Google scholar
|
[27] |
Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J, Qi Y. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials, 2018, 28(1): 1703835
CrossRef
Google scholar
|
[28] |
Yang D, Yang R, Zhang J, Yang Z, Liu S, Li C. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy & Environmental Science, 2015, 8(11): 3208–3214
CrossRef
Google scholar
|
[29] |
Wang K, Zhao W, Liu J, Niu J, Liu Y, Ren X, Feng J, Liu Z, Sun J, Wang D, Liu S F. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9(39): 33989–33996
CrossRef
Pubmed
Google scholar
|
[30] |
Liu T, Chen K, Hu Q, Zhu R, Gong Q. Inverted perovskite solar cells: progresses and perspectives. Advanced Energy Materials, 2016, 6(17): 1600457
CrossRef
Google scholar
|
[31] |
Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446
CrossRef
Pubmed
Google scholar
|
[32] |
Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132
CrossRef
Pubmed
Google scholar
|
[33] |
De Rossi F, Baker J A, Beynon D, Hooper K E A, Meroni S M P, Williams D, Wei Z, Yasin A, Charbonneau C, Jewell E H, Watson T M. All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency. Advanced Materials Technologies, 2018, 3(11): 1800156
CrossRef
Google scholar
|
[34] |
Baranwal A K, Kanaya S, Peiris T A N, Mizuta G, Nishina T, Kanda H, Miyasaka T, Segawa H, Ito S. 100°C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem, 2016, 9(18): 2604–2608
CrossRef
Pubmed
Google scholar
|
[35] |
Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684
CrossRef
Pubmed
Google scholar
|
[36] |
Chan C Y, Wang Y, Wu G W, Wei-Guang Diau E. Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(10): 3872–3878
CrossRef
Google scholar
|
[37] |
Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538
CrossRef
Google scholar
|
[38] |
Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
CrossRef
Google scholar
|
[39] |
Lin H W, Chang C P, Hwu W H, Ger M D. The rheological behaviors of screen-printing pastes. Journal of Materials Processing Technology, 2008, 197(1–3): 284–291
CrossRef
Google scholar
|
/
〈 | 〉 |