Review on partially coherent vortex beams

Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI

PDF(9863 KB)
PDF(9863 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (3) : 229-248. DOI: 10.1007/s12200-019-0901-x
REVIEW ARTICIE
REVIEW ARTICIE

Review on partially coherent vortex beams

Author information +
History +

Abstract

Ever since vortex beams were proposed, they are known for owning phase singularity and carrying orbital angular momentum (OAM). In the past decades, coherent optics developed rapidly. Vortex beams have been extended from fully coherent light to partially coherent light, from scalar light to vector light, from integral topological charge (TC) to fractional TC. Partially coherent vortex beams have attracted tremendous interest due to their hidden correlation singularity and unique propagation properties (e.g., beam shaping, beam rotation and self-reconstruction). Based on the sufficient condition for devising a genuine correlation function of partially coherent beam, partially coherent vortex beams with nonconventional correlation functions (i.e., non-Gaussian correlated Schell-model functions) were introduced recently. This timely review summarizes basic concepts, theoretical models, generation and propagation of partially coherent vortex beams.

Keywords

partially coherent vortex beam / phase singularity / correlation singularity / topological charge (TC) / coherence length / correlation function

Cite this article

Download citation ▾
Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams. Front. Optoelectron., 2019, 12(3): 229‒248 https://doi.org/10.1007/s12200-019-0901-x

References

[1]
Nye J, Berry M. Dislocations in wave trains. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 336(1605): 165–190
CrossRef Google scholar
[2]
Soskin M, Vasnetsov M. Singular optics. Progress in Optics, 2001, 42(4): 219–276
CrossRef Google scholar
[3]
Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230
CrossRef Pubmed Google scholar
[4]
Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M. Topological nature of optical bound states in the continuum. Physical Review Letters, 2014, 113(25): 257401
CrossRef Pubmed Google scholar
[5]
Flossmann F, Schwarz U, Maier M. Propagation dynamics of optical vortices in Laguerre–Gaussian beams. Optics Communications, 2005, 250(4–6): 218–230
CrossRef Google scholar
[6]
Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Optics Express, 2008, 16(26): 21315–21320
CrossRef Pubmed Google scholar
[7]
Schwarz U, Sogomonian S, Maier M. Propagation dynamics of phase dislocations embedded in a Bessel light beam. Optics Communications, 2002, 208(4–6): 255–262
CrossRef Google scholar
[8]
Orlov S, Regelskis K, Smilgevičius V, Stabinis A. Propagation of Bessel beams carrying optical vortices. Optics Communications, 2002, 209(1–3): 155–165
CrossRef Google scholar
[9]
Yang Y, Dong Y, Zhao C, Cai Y. Generation and propagation of an anomalous vortex beam. Optics Letters, 2013, 38(24): 5418–5421
CrossRef Pubmed Google scholar
[10]
Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam. Optics Letters, 2015, 40(4): 597–600
CrossRef Pubmed Google scholar
[11]
Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, Zhao J. Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41(10): 2205–2208
CrossRef Pubmed Google scholar
[12]
Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901
CrossRef Pubmed Google scholar
[13]
Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, 99(8): 087701
CrossRef Pubmed Google scholar
[14]
Grier D G. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
CrossRef Pubmed Google scholar
[15]
O’Neil A T, Padgett M J. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. Optics Communications, 2001, 193(1–6): 45–50
CrossRef Google scholar
[16]
Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam. Physical Review Letters, 2010, 104(10): 103601
CrossRef Pubmed Google scholar
[17]
Wang X, Rui G, Gong L, Gu B, Cui Y. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Optics Express, 2016, 24(21): 24143–24152 doi:10.1364/OE.24.024143
Pubmed
[18]
Chen J, Wan C, Kong L J, Zhan Q. Tightly focused optical field with controllable photonic spin orientation. Optics Express, 2017, 25(16): 19517–19528
CrossRef Pubmed Google scholar
[19]
Molina-Terriza G, Torres J P, Torner L. Twisted photons. Nature Physics, 2007, 3(5): 305–310
CrossRef Google scholar
[20]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef Pubmed Google scholar
[21]
Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Physical Review Letters, 2003, 91(22): 227902
CrossRef Pubmed Google scholar
[22]
Gu Y, Gbur G. Measurement of atmospheric turbulence strength by vortex beam. Optics Communications, 2010, 283(7): 1209–1212
CrossRef Google scholar
[23]
Li X, Tai Y, Zhang L, Li H, Li L. Characterization of dynamic random process using optical vortex metrology. Applied Physics B, Lasers and Optics, 2014, 116(4): 901–909
CrossRef Google scholar
[24]
Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the rayleigh criterion limit with optical vortices. Physical Review Letters, 2006, 97(16): 163903
CrossRef Pubmed Google scholar
[25]
Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K. Super‐resolution deep imaging with hollow Bessel beam STED microscopy. Laser & Photonics Reviews, 2016, 10(1): 147–152
CrossRef Google scholar
[26]
Beijersbergen M W, Allen L, Van der Veen H, Woerdman J. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 1993, 96(1–3): 123–132
CrossRef Google scholar
[27]
Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon. Optics Communications, 2000, 177(1–6): 297–301
CrossRef Google scholar
[28]
Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5–6): 321–327
CrossRef Google scholar
[29]
Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223
CrossRef Pubmed Google scholar
[30]
Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N, Hara T. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(7): 1642–1651
CrossRef Pubmed Google scholar
[31]
Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
CrossRef Pubmed Google scholar
[32]
Chen P, Ji W, Wei B Y, Hu W, Chigrinov V, Lu Y Q. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Applied Physics Letters, 2015, 107(24): 241102
CrossRef Google scholar
[33]
Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beams. Optics Letters, 2007, 32(11): 1468–1470
CrossRef Pubmed Google scholar
[34]
Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 2016, 10(5): 327–332
CrossRef Google scholar
[35]
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef Pubmed Google scholar
[36]
Fang X, Yang G, Wei D, Wei D, Ni R, Ji W, Zhang Y, Hu X, Hu W, Lu Y Q, Zhu S N, Xiao M. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO₃ crystal. Optics Letters, 2016, 41(6): 1169–1172PMID:26977661
CrossRef Google scholar
[37]
Wu Y, Ni R, Xu Z, Wu Y, Fang X, Wei D, Hu X, Zhang Y, Xiao M, Zhu S. Tunable third harmonic generation of vortex beams in an optical superlattice. Optics Express, 2017, 25(25): 30820–30826
CrossRef Pubmed Google scholar
[38]
Leach J, Keen S, Padgett M J, Saunter C, Love G D. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Optics Express, 2006, 14(25): 11919–11924
CrossRef Pubmed Google scholar
[39]
Berkhout G C, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Physical Review Letters, 2008, 101(10): 100801
CrossRef Pubmed Google scholar
[40]
Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams. Optics Letters, 2006, 31(7): 999–1001
CrossRef Pubmed Google scholar
[41]
Hickmann J M, Fonseca E J, Soares W C, Chávez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 2010, 105(5): 053904
CrossRef Pubmed Google scholar
[42]
de Araujo L E, Anderson M E. Measuring vortex charge with a triangular aperture. Optics Letters, 2011, 36(6): 787–789
CrossRef Pubmed Google scholar
[43]
Guo C S, Yue S J, Wei G X. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Applied Physics Letters, 2009, 94(23): 231104
CrossRef Google scholar
[44]
Vinu R V, Singh R K. Determining helicity and topological structure of coherent vortex beam from laser speckle. Applied Physics Letters, 2016, 109(11): 111108 doi:10.1063/1.4962952
[45]
Prabhakar S, Kumar A, Banerji J, Singh R P. Revealing the order of a vortex through its intensity record. Optics Letters, 2011, 36(22): 4398–4400
CrossRef Pubmed Google scholar
[46]
Zhao P, Li S, Feng X, Cui K, Liu F, Zhang W, Huang Y. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 2017, 42(6): 1080–1083
CrossRef Pubmed Google scholar
[47]
Dudley A, Litvin I A, Forbes A. Quantitative measurement of the orbital angular momentum density of light. Applied Optics, 2012, 51(7): 823–833
CrossRef Pubmed Google scholar
[48]
Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light, Science & Applications, 2017, 6(4): e16251
CrossRef Pubmed Google scholar
[49]
Basistiy I, Soskin M, Vasnetsov M. Optical wavefront dislocations and their properties. Optics Communications, 1995, 119(5–6): 604–612
CrossRef Google scholar
[50]
Lee W, Yuan X C, Dholakia K. Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step. Optics Communications, 2004, 239(1–3): 129–135
CrossRef Google scholar
[51]
Berry M. Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A, Pure and Applied Optics, 2004, 6(2): 259–268
CrossRef Google scholar
[52]
Gbur G. Fractional vortex Hilbert’s hotel. Optica, 2016, 3(3): 222–225
CrossRef Google scholar
[53]
Tao S H, Lee W M, Yuan X C. Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator. Optics Letters, 2003, 28(20): 1867–1869
CrossRef Pubmed Google scholar
[54]
Fang Y, Lu Q, Wang X, Zhang W, Chen L. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale. Physical Review A, 2017, 95(2): 023821
CrossRef Google scholar
[55]
Molchan M A, Doktorov E V, Vlasov R A. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere. Optics Letters, 2010, 35(5): 670–672
CrossRef Pubmed Google scholar
[56]
Vasylkiv Y, Skab I, Vlokh R. Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 1936–1945
CrossRef Pubmed Google scholar
[57]
Yang Y, Zhu X, Zeng J, Lu X, Zhao C, Cai Y. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 2018, 7(3): 677–682
CrossRef Google scholar
[58]
Oemrawsingh S S R, de Jong J A, Ma X, Aiello A, Eliel E R, ’t Hooft G W, Woerdman J P. High-dimensional mode analyzers for spatial quantum entanglement. Physical Review A, 2006, 73(3): 032339 doi:10.1103/PhysRevA.73.032339
[59]
Guo C S, Yu Y N, Hong Z. Optical sorting using an array of optical vortices with fractional topological charge. Optics Communications, 2010, 283(9): 1889–1893
CrossRef Google scholar
[60]
Tao S, Yuan X C, Lin J, Peng X, Niu H. Fractional optical vortex beam induced rotation of particles. Optics Express, 2005, 13(20): 7726–7731
CrossRef Pubmed Google scholar
[61]
Situ G, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2009, 26(8): 1788–1797
CrossRef Pubmed Google scholar
[62]
Strohaber J, Boran Y, Sayrac M, Johnson L, Zhu F, Kolomenskii A, Schuessler H. Nonlinear mixing of optical vortices with fractional topological charge in Raman sideband generation. Journal of Optics, 2017, 19(1): 015607 doi:10.1088/2040-8986/19/1/015607
[63]
Ni R, Niu Y, Du L, Hu X, Zhang Y, Zhu S. Topological charge transfer in frequency doubling of fractional orbital angular momentum state. Applied Physics Letters, 2016, 109(15): 151103
CrossRef Google scholar
[64]
Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7nd ed. Cambridge: Cambridge University Press, 1999
[65]
Wolf E. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources. Journal of the Optical Society of America, 1982, 72(3): 343–351
CrossRef Google scholar
[66]
Wolf E. New theory of partial coherence in the space-frequency domain. Part II: steady-state fields and higher-order correlations. Journal of the Optical Society of America A, Optics and Image Science, 1986, 3(1): 76–85
CrossRef Google scholar
[67]
Wolf E. Invariance of the spectrum of light on propagation. Physical Review Letters, 1986, 56(13): 1370–1372
CrossRef Pubmed Google scholar
[68]
Gori F. Collett-Wolf sources and multimode lasers. Optics Communications, 1980, 34(3): 301–305
CrossRef Google scholar
[69]
Carter W H, Wolf E. Coherence and radiometry with quasihomogeneous planar sources. Journal of the Optical Society of America, 1977, 67(6): 785–796 doi:10.1364/JOSA.67.000785
[70]
Gori F. Mode propagation of the field generated by Collett-Wolf Schell-model sources. Optics Communications, 1983, 46(3–4): 149–154
CrossRef Google scholar
[71]
Gori F, Guattari G, Padovani C. Modal expansion for Jo-correlated Schell-model sources. Optics Communications, 1987, 64(4): 311–316 doi:10.1016/0030-4018(87)90242-2
[72]
Gori F, Guattari G, Palma C, Padovani C. Observation of optical redshifts and blueshifts produced by source correlations. Optics Communications, 1988, 67(1): 1–4
CrossRef Google scholar
[73]
Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2002, 19(9): 1794–1802
CrossRef Pubmed Google scholar
[74]
Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2003, 20(5): 856–866
CrossRef Pubmed Google scholar
[75]
Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Physical Review Letters, 1984, 53(11): 1057–1060
CrossRef Google scholar
[76]
Beléndez A, Carretero L, Fimia A. The use of partially coherent light to reduce the efficiency of silver halide noise gratings. Optics Communications, 1993, 98(4–6): 236–240
CrossRef Google scholar
[77]
Cai Y, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 2005, 71(5): 056607 doi:10.1103/PhysRevE.71.056607
Pubmed
[78]
Zhao C, Cai Y, Lu X, Eyyuboğlu H T. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Optics Express, 2009, 17(3): 1753–1765
CrossRef Pubmed Google scholar
[79]
Zhang J F, Wang Z Y, Cheng B, Wang Q Y, Wu B, Shen X X, Zheng L L, Xu Y F, Lin Q. Atom cooling by partially spatially coherent lasers. Physical Review A., 2013, 88(2): 023416
CrossRef Google scholar
[80]
Zubairy M S, McIver J K. Second-harmonic generation by a partially coherent beam. Physical Review A, 1987, 36(1): 202–206
CrossRef Pubmed Google scholar
[81]
Cai Y, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam. Optics Express, 2007, 15(23): 15480–15492
CrossRef Pubmed Google scholar
[82]
van Dijk T, Fischer D G, Visser T D, Wolf E. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Physical Review Letters, 2010, 104(17): 173902
CrossRef Pubmed Google scholar
[83]
Ding C, Cai Y, Korotkova O, Zhang Y, Pan L. Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse. Optics Letters, 2011, 36(4): 517–519
CrossRef Pubmed Google scholar
[84]
Kermisch D. Partially coherent image processing by laser scanning. Journal of the Optical Society of America, 1975, 65(8): 887–891
CrossRef Google scholar
[85]
Gori F, Santarsiero M, Borghi R, Vicalvi S. Partially coherent sources with helicoidal modes. Optica Acta, 1998, 45(3): 539–554
[86]
Gbur G, Visser T D, Wolf E.'Hidden' singularities in partially coherent wavefields. Journal of Optics A Pure & Applied Optics, 2004, 6(5): S239–S242
[87]
Visser T D, Gbur G, Wolf E. Effect of the state of coherence on the three-dimensional spectral intensity distribution near focus. Optics Communications, 2002, 213(1–3): 13–19
CrossRef Google scholar
[88]
Bouchal Z, Perina J. Non-diffracting beams with controlled spatial coherence. Optica Acta, 2002, 49(10): 1673–1689
[89]
Gbur G, Visser T D. Coherence vortices in partially coherent beams. Optics Communications, 2003, 222(1–6): 117–125 doi:10.1016/S0030-4018(03)01606-7
[90]
Ponomarenko S A. A class of partially coherent beams carrying optical vortices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(1): 150–156
CrossRef Pubmed Google scholar
[91]
Maleev I D, Palacios D M, Marathay A S, Swartzlander G A Jr. Spatial correlation vortices in partially coherent light: theory. Journal of the Optical Society of America B, Optical Physics, 2004, 21(11): 1895–1900
CrossRef Google scholar
[92]
Jeng C C, Shih M F, Motzek K, Kivshar Y. Partially incoherent optical vortices in self-focusing nonlinear media. Physical Review Letters, 2004, 92(4): 043904
CrossRef Pubmed Google scholar
[93]
van Dijk T, Visser T D. Evolution of singularities in a partially coherent vortex beam. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(4): 741–744 doi:10.1364/JOSAA.26.000741
Pubmed
[94]
Wang F, Zhu S, Cai Y. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Optics Letters, 2011, 36(16): 3281–3283
CrossRef Pubmed Google scholar
[95]
Yang Y, Chen M, Mazilu M, Mourka A, Liu Y D, Dholakia K. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity. New Journal of Physics, 2013, 15(11): 113053
CrossRef Google scholar
[96]
Qin Z, Tao R, Zhou P, Xu X, Liu Z. Propagation of partially coherent Bessel–Gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Optics & Laser Technology, 2014, 56(33): 182–188
CrossRef Google scholar
[97]
Zhang Z, Fan H, Xu H F, Qu J, Huang W. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic. Journal of Optics, 2015, 17(6): 065611
CrossRef Google scholar
[98]
Singh R K, Sharma A M, Senthilkumaran P. Vortex array embedded in a partially coherent beam. Optics Letters, 2015, 40(12): 2751–2754
CrossRef Pubmed Google scholar
[99]
Liu D, Wang Y, Yin H. Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Applied Optics, 2015, 54(35): 10510–10516
CrossRef Pubmed Google scholar
[100]
Cheng M, Guo L, Li J, Huang Q, Cheng Q, Zhang D. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean. Applied Optics, 2016, 55(17): 4642–4648
CrossRef Pubmed Google scholar
[101]
Zhang Y, Ma D, Zhou Z, Yuan X. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Applied Optics, 2017, 56(10): 2922–2926
CrossRef Pubmed Google scholar
[102]
Liu X, Peng X, Liu L, Wu G, Zhao C, Wang F, Cai Y. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110(18): 181104 doi:10.1063/1.4982786
[103]
Stahl C S D, Gbur G. Partially coherent vortex beams of arbitrary order. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(10): 1793–1799
CrossRef Pubmed Google scholar
[104]
Liu D, Yin H, Wang G, Wang Y. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Applied Optics, 2017, 56(31): 8785–8792
CrossRef Pubmed Google scholar
[105]
Ostrovsky A S, García-García J, Rickenstorff-Parrao C, Olvera-Santamaría M A. Partially coherent diffraction-free vortex beams with a Bessel-mode structure. Optics Letters, 2017, 42(24): 5182–5185
CrossRef Pubmed Google scholar
[106]
Gori F, Santarsiero M. Devising genuine spatial correlation functions. Optics Letters, 2007, 32(24): 3531–3533
CrossRef Pubmed Google scholar
[107]
Gori F, Ramirezsanchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. Journal of Optics A, 2009, 11(8): 085706
CrossRef Google scholar
[108]
Chen Y, Liu L, Wang F, Zhao C, Cai Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Optics Express, 2014, 22(11): 13975–13987
CrossRef Pubmed Google scholar
[109]
Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2012, 29(10): 2154–2158
CrossRef Pubmed Google scholar
[110]
Lajunen H, Saastamoinen T. Non-uniformly correlated partially coherent pulses. Optics Express, 2013, 21(1): 190–195
CrossRef Pubmed Google scholar
[111]
Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Optics Letters, 2012, 37(14): 2970–2972
CrossRef Pubmed Google scholar
[112]
Zhang Y, Liu L, Zhao C, Cai Y. Multi-Gaussian Schell-model vortex beam. Physics Letters A, 2014, 378(9): 750–754 doi:10.1016/j.physleta.2013.12.039
[113]
Chen Y, Wang F, Zhao C, Cai Y. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 2014, 22(5): 5826–5838
CrossRef Pubmed Google scholar
[114]
Liu H, Chen D, Xia J, Lü Y, Zhang L, Pu X. Influences of uniaxial crystal on partially coherent multi-Gaussian Schell-model vortex beams. Optical Engineering (Redondo Beach, Calif.), 2016, 55(11): 116101
CrossRef Google scholar
[115]
Liu X, Wang F, Liu L, Zhao C, Cai Y. Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(11): 2058–2065
CrossRef Pubmed Google scholar
[116]
Zhang Y, Pan L, Cai Y. Propagation of Correlation Singularities of a Partially Coherent Laguerre-Gaussian Electromagnetic Beam in a Uniaxial Crystal. IEEE Photonics Journal, 2017, 9(4): 1–13
CrossRef Google scholar
[117]
Guo L, Chen Y, Liu X, Liu L, Cai Y. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Optics Express, 2016, 24(13): 13714–13728
CrossRef Pubmed Google scholar
[118]
Zhao C, Cai Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Optics Letters, 2011, 36(12): 2251–2253
CrossRef Pubmed Google scholar
[119]
Liu X, Shen Y, Liu L, Wang F, Cai Y. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Optics Letters, 2013, 38(24): 5323–5326
CrossRef Pubmed Google scholar
[120]
Zeng J, Liu X, Wang F, Zhao C, Cai Y. Partially coherent fractional vortex beam. Optics Express, 2018, 26(21): 26830–26844 doi:10.1364/OE.26.026830
Pubmed
[121]
Perez-Garcia B, Yepiz A, Hernandez-Aranda R I, Forbes A, Swartzlander G A. Digital generation of partially coherent vortex beams. Optics Letters, 2016, 41(15): 3471–3474
CrossRef Pubmed Google scholar
[122]
Liu R, Wang F, Chen D, Wang Y, Zhou Y, Gao H, Zhang P, Li F. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment. Applied Physics Letters, 2016, 108(5): 051107 doi:10.1063/1.4941422
[123]
Pires H D, Woudenberg J, van Exter M P. Measurements of spatial coherence of partially coherent light with and without orbital angular momentum. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(12): 2630–2637
CrossRef Pubmed Google scholar
[124]
Pires H D, Woudenberg J, van Exter M P. Measurement of the orbital angular momentum spectrum of partially coherent beams. Optics Letters, 2010, 35(6): 889–891
CrossRef Pubmed Google scholar
[125]
Zhao C, Wang F, Dong Y, Han Y, Cai Y. Effect of spatial coherence on determining the topological charge of a vortex beam. Applied Physics Letters, 2012, 101(26): 261104 doi:10.1063/1.4773236
[126]
Yang Y, Mazilu M, Dholakia K. Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Optics Letters, 2012, 37(23): 4949–4951
CrossRef Pubmed Google scholar
[127]
Escalante A Y, Perezgarcia B, Hernandezaranda R I, Swartzlander G A. Determination of angular momentum content in partially coherent beams through cross correlation measurements. In: Proceedings of SPIE Laser Beam Shaping. SPIE, 2013, 884302
[128]
Kotlyar V V, Almazov A A, Khonina S N, Soifer V A, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(5): 849–861 doi:10.1364/JOSAA.22.000849
Pubmed
[129]
Wang F, Cai Y, Korotkova O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Optics Express, 2009, 17(25): 22366–22379
CrossRef Pubmed Google scholar
[130]
Dennis M R, O’Holleran K, Padgett M J. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. Progress in Optics, 2009, 53: 293–363 doi:10.1016/S0079-6638(08)00205-9
[131]
Bogatyryova G V, Fel’de C V, Polyanskii P V, Ponomarenko S A, Soskin M S, Wolf E. Partially coherent vortex beams with a separable phase. Optics Letters, 2003, 28(11): 878–880
CrossRef Pubmed Google scholar
[132]
Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 2001, 1–1194
[133]
Palacios D M, Maleev I D, Marathay A S, Swartzlander G A Jr. Spatial correlation singularity of a vortex field. Physical Review Letters, 2004, 92(14): 143905
CrossRef Pubmed Google scholar
[134]
Wolf E. Introduction to the Theory of Coherence and Polarization of Light. Cambridge: Cambridge University Press, 2007
[135]
Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 2083–2096
CrossRef Pubmed Google scholar
[136]
Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device. Annalen der Physik, 2015, 527(7–8): 447–470
CrossRef Google scholar
[137]
De Santis P, Gori F, Guattari G, Palma C. An example of a Collett-Wolf source. Optics Communications, 1979, 29(3): 256–260
CrossRef Google scholar
[138]
Ostrovsky A S, García E H. Modulation of spatial coherence of optical field by means of liquid crystal light modulator. Revista Mexicana de Física, 2005, 51(5): 442–446
[139]
Liu X, Wu T, Liu L, Zhao C, Cai Y. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam. Chinese Optics Letters, 2017, 15(3): 030002–030006 doi:10.3788/COL201715.030002
[140]
Wang F, Liu X, Yuan Y, Cai Y. Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 2013, 38(11): 1814–1816
CrossRef Pubmed Google scholar
[141]
Chen J, Liu X, Yu J, Cai Y. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam. Applied Physics B, Lasers and Optics, 2016, 122(7): 201 doi:10.1007/s00340-016-6470-4
[142]
Polyanskii P V. Some current views on singular optics. In: Proceedings of SPIE 6th International Conference on Correlation Optics. SPIE, 2004, 31–41
[143]
Soskin M, Boriskina S V, Chong Y, Dennis M R, Desyatnikov A. Singular optics and topological photonics. Journal of Optics, 2017, 19(1): 010401
CrossRef Google scholar

Acknowledgements

Authors are thankful for the support of the National Natural Science Foundation of China (Grant Nos. 91750201, 11525418, 11774250 and 11804198), Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(9863 KB)

Accesses

Citations

Detail

Sections
Recommended

/