Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2019, Vol. 12 Issue (3) : 229-248     https://doi.org/10.1007/s12200-019-0901-x
REVIEW ARTICIE
Review on partially coherent vortex beams
Jun ZENG1, Rong LIN2,3, Xianlong LIU2, Chengliang ZHAO1, Yangjian CAI1,2()
1. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
3. College of Physics and Electronic Engineering, Heze University, Heze 274015, China
Download: PDF(9863 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ever since vortex beams were proposed, they are known for owning phase singularity and carrying orbital angular momentum (OAM). In the past decades, coherent optics developed rapidly. Vortex beams have been extended from fully coherent light to partially coherent light, from scalar light to vector light, from integral topological charge (TC) to fractional TC. Partially coherent vortex beams have attracted tremendous interest due to their hidden correlation singularity and unique propagation properties (e.g., beam shaping, beam rotation and self-reconstruction). Based on the sufficient condition for devising a genuine correlation function of partially coherent beam, partially coherent vortex beams with nonconventional correlation functions (i.e., non-Gaussian correlated Schell-model functions) were introduced recently. This timely review summarizes basic concepts, theoretical models, generation and propagation of partially coherent vortex beams.

Keywords partially coherent vortex beam      phase singularity      correlation singularity      topological charge (TC)      coherence length      correlation function     
Corresponding Authors: Yangjian CAI   
Just Accepted Date: 07 March 2019   Online First Date: 30 May 2019    Issue Date: 16 September 2019
 Cite this article:   
Jun ZENG,Rong LIN,Xianlong LIU, et al. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-019-0901-x
http://journal.hep.com.cn/foe/EN/Y2019/V12/I3/229
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun ZENG
Rong LIN
Xianlong LIU
Chengliang ZHAO
Yangjian CAI
Fig.1  Wave front of spiral structure. (a) and (b) Wave front of right hand spiral structure with topological charge l = 1 and 3; (c) and (d) Wave front of left hand spiral structure with topological charge l = -1 and -3
Fig.2  Intensity and phase of Gaussian vortex beam with different l at the source plane. (a) and (d) l = 3; (b) and (e) l = -3; (c) and (f) l = 1.5
Fig.3  Phase of edge dislocation
Fig.4  (a) Modulus and (b) contours of constant phase of the spectral degree of coherence (correlation function) of a partially coherent beam with vortex phase superposed by LG01 and LG11 model beams [131]
Fig.5  Intensity (a−c) and cross correlation functions (d−f) of a partially coherent vortex beam with l = 1 in the far-field plane with different coherence lengths [133]
Fig.6  Experimental setup for generating a Gaussian Schell-model vortex beam [94]. NDF, neutral density filter; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; SPP, spiral phase plate; L1, L2, lenses
Fig.7  (a) Experimental setup for generating a LGpl beam [139]; (b) experimental setup for generating a partially coherent fractional vortex beam [120]. NDF, neutral density filter; BE, beam expander; RM, reflecting mirror; L1, L2, L3, thin lenses; PC1, personal computers; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; SLM, spatial light modulator; CA, circular aperture; BS, beam splitter; CGH, computer-generated holograms; CCD: charge-coupled device
Fig.8  Experimental setup for generating a Laguerre-Gaussian correlated Schell-model vortex beam [113]. BE, beam expander; SLM, spatial light modulator; CA, circular aperture; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; L1, L2, thin lenses; SPP, spiral phase plate;PC1, personal computers
Fig.9  Experimental setup for generating a vector partially coherent vortex beam with uniform state of polarization [115]. (a) Without antidiagonal elements; (b) with antidiagonal elements. NDF1, NDF2, neutral density filters; L1, L2, thin lenses; RGGD1, RGGD2, rotating ground-glass disks; PBS, polarization beam splitter; GAF, Gaussian amplitude filter; SPP, spiral phase plate; HP, half-wave plate; M1, M2, reflecting mirrors
Fig.10  Experimental setup for generating a partially coherent radially polarized vortex beam [117]. M, reflecting mirror; BE, beam expander; L1, L2, thin lenses; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; RPC, radially polarized convertor; SPP, spiral phase plate
Fig.11  Intensity distribution and the corresponding cross line (y = 0) of focused Gaussian Schell-model vortex beam in the focal plane for different values of initial coherence length σ g [94]
Fig.12  Intensity distribution and the corresponding cross line (y = 0) of a focused partially coherent radially polarized vortex beam in the focal plane for different values of the topological charge m [117]
Fig.13  Intensity distribution and the corresponding cross line (y = 0) of an electromagnetic Gaussian Schell-model beam without vortex phase and an electromagnetic Gaussian Schell-model vortex beam in the focal plane for different values of the initial degree of polarization [115]
Fig.14  Normalized intensity distributions of a PCIV beam (l = 1) and a PCFV beam (l = 1.5) focused by a thin lens at several propagation distances [120]
Fig.15  Intensity distribution and its x- and y-components of a focused partially coherent radially polarized vortex beam with l = 0 in the x-y plane at several propagation distances. The green solid curve denotes the cross line (y = 0) [117]
Fig.16  Intensity distribution and its x- and y-components of a focused partially coherent radially polarized vortex beam with l = 2 in the x-y plane at several propagation distances. The green solid curve denotes the cross line (y = 0) [117]
Fig.17  Intensity distribution and its x- and y-components of a focused partially coherent radially polarized vortex beam with l = -2 in the x-y plane at several propagation distances. The green solid curve denotes the cross line (y = 0) [117]
Fig.18  Normalized average intensity distribution of a partially coherent LG0l beam after passing through a couple of cylindrical lenses at different propagation distances [141]
Fig.19  Normalized intensity distribution of a focused partially coherent LGpl beam with p = 1 and l = 1 obstructed by a sector shaped opaque obstacle with center angle a at several propagation distances [102]
Fig.20  Modulus of the degree of coherence of a focused partially coherent LGpl beam with p = 1 and l = 1 obstructed by a sector shaped opaque obstacle with center angle a at several propagation distances [102]
Fig.21  Modulus of the degree of coherence of a focused partially coherent LGpl beam with p = 1 and l = 1 obstructed by a sector shaped opaque obstacle with center angle a = 90° in the focal plane for different values of initial coherence length [102]
1 J Nye, M Berry. Dislocations in wave trains. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 336(1605): 165–190
https://doi.org/10.1098/rspa.1974.0012
2 M Soskin, M Vasnetsov. Singular optics. Progress in Optics, 2001, 42(4): 219–276
https://doi.org/10.1016/S0079-6638(01)80018-4
3 G Gbur, R K Tyson. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230
https://doi.org/10.1364/JOSAA.25.000225 pmid: 18157230
4 B Zhen, C W Hsu, L Lu, A D Stone, M Soljačić. Topological nature of optical bound states in the continuum. Physical Review Letters, 2014, 113(25): 257401
https://doi.org/10.1103/PhysRevLett.113.257401 pmid: 25554906
5 F Flossmann, U Schwarz, M Maier. Propagation dynamics of optical vortices in Laguerre–Gaussian beams. Optics Communications, 2005, 250(4–6): 218–230
https://doi.org/10.1016/j.optcom.2005.02.032
6 K Zhu, G Zhou, X Li, X Zheng, H Tang. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Optics Express, 2008, 16(26): 21315–21320
https://doi.org/10.1364/OE.16.021315 pmid: 19104561
7 U Schwarz, S Sogomonian, M Maier. Propagation dynamics of phase dislocations embedded in a Bessel light beam. Optics Communications, 2002, 208(4–6): 255–262
https://doi.org/10.1016/S0030-4018(02)01621-8
8 S Orlov, K Regelskis, V Smilgevičius, A Stabinis. Propagation of Bessel beams carrying optical vortices. Optics Communications, 2002, 209(1–3): 155–165
https://doi.org/10.1016/S0030-4018(02)01667-X
9 Y Yang, Y Dong, C Zhao, Y Cai. Generation and propagation of an anomalous vortex beam. Optics Letters, 2013, 38(24): 5418–5421
https://doi.org/10.1364/OL.38.005418 pmid: 24343006
10 P Vaity, L Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Optics Letters, 2015, 40(4): 597–600
https://doi.org/10.1364/OL.40.000597 pmid: 25680159
11 P Li, Y Zhang, S Liu, C Ma, L Han, H Cheng, J Zhao. Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41(10): 2205–2208
https://doi.org/10.1364/OL.41.002205 pmid: 27176963
12 C Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901
https://doi.org/10.1103/PhysRevLett.94.153901 pmid: 15904145
13 B Thidé, H Then, J Sjöholm, K Palmer, J Bergman, T D Carozzi, Y N Istomin, N H Ibragimov, R Khamitova. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, 99(8): 087701
https://doi.org/10.1103/PhysRevLett.99.087701 pmid: 17930983
14 D G Grier. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
https://doi.org/10.1038/nature01935 pmid: 12917694
15 A T O’Neil, M J Padgett. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. Optics Communications, 2001, 193(1–6): 45–50
https://doi.org/10.1016/S0030-4018(01)01198-1
16 J Ng, Z Lin, C T Chan. Theory of optical trapping by an optical vortex beam. Physical Review Letters, 2010, 104(10): 103601
https://doi.org/10.1103/PhysRevLett.104.103601 pmid: 20366423
17 X Wang, G Rui, L Gong, B Gu, Y Cui. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Optics Express, 2016, 24(21): 24143–24152 doi:10.1364/OE.24.024143
pmid: 27828245
18 J Chen, C Wan, L J Kong, Q Zhan. Tightly focused optical field with controllable photonic spin orientation. Optics Express, 2017, 25(16): 19517–19528
https://doi.org/10.1364/OE.25.019517 pmid: 29041145
19 G Molina-Terriza, J P Torres, L Torner. Twisted photons. Nature Physics, 2007, 3(5): 305–310
https://doi.org/10.1038/nphys607
20 N Bozinovic, Y Yue, Y Ren, M Tur, P Kristensen, H Huang, A E Willner, S Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
https://doi.org/10.1126/science.1237861 pmid: 23812709
21 A Vaziri, J W Pan, T Jennewein, G Weihs, A Zeilinger. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Physical Review Letters, 2003, 91(22): 227902
https://doi.org/10.1103/PhysRevLett.91.227902 pmid: 14683274
22 Y Gu, G Gbur. Measurement of atmospheric turbulence strength by vortex beam. Optics Communications, 2010, 283(7): 1209–1212
https://doi.org/10.1016/j.optcom.2009.11.049
23 X Li, Y Tai, L Zhang, H Li, L Li. Characterization of dynamic random process using optical vortex metrology. Applied Physics B, Lasers and Optics, 2014, 116(4): 901–909
https://doi.org/10.1007/s00340-014-5776-3
24 F Tamburini, G Anzolin, G Umbriaco, A Bianchini, C Barbieri. Overcoming the rayleigh criterion limit with optical vortices. Physical Review Letters, 2006, 97(16): 163903
https://doi.org/10.1103/PhysRevLett.97.163903 pmid: 17155396
25 W Yu, Z Ji, D Dong, X Yang, Y Xiao, Q Gong, P Xi, K Shi. Super‐resolution deep imaging with hollow Bessel beam STED microscopy. Laser & Photonics Reviews, 2016, 10(1): 147–152
https://doi.org/10.1002/lpor.201500151
26 M W Beijersbergen, L Allen, H Van der Veen, J Woerdman. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 1993, 96(1–3): 123–132
https://doi.org/10.1016/0030-4018(93)90535-D
27 J Arlt, K Dholakia. Generation of high-order Bessel beams by use of an axicon. Optics Communications, 2000, 177(1–6): 297–301
https://doi.org/10.1016/S0030-4018(00)00572-1
28 M Beijersbergen, R Coerwinkel, M Kristensen, J Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5–6): 321–327
https://doi.org/10.1016/0030-4018(94)90638-6
29 N R Heckenberg, R McDuff, C P Smith, A G White. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223
https://doi.org/10.1364/OL.17.000221 pmid: 19784282
30 N Matsumoto, T Ando, T Inoue, Y Ohtake, N Fukuchi, T Hara. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(7): 1642–1651
https://doi.org/10.1364/JOSAA.25.001642 pmid: 18594620
31 L Marrucci, C Manzo, D Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
https://doi.org/10.1103/PhysRevLett.96.163905 pmid: 16712234
32 P Chen, W Ji, B Y Wei, W Hu, V Chigrinov, Y Q Lu. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Applied Physics Letters, 2015, 107(24): 241102
https://doi.org/10.1063/1.4937592
33 G Machavariani, Y Lumer, I Moshe, A Meir, S Jackel. Efficient extracavity generation of radially and azimuthally polarized beams. Optics Letters, 2007, 32(11): 1468–1470
https://doi.org/10.1364/OL.32.001468 pmid: 17546157
34 D Naidoo, F S Roux, A Dudley, I Litvin, B Piccirillo, L Marrucci, A Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 2016, 10(5): 327–332
https://doi.org/10.1038/nphoton.2016.37
35 X Cai, J Wang, M J Strain, B Johnson-Morris, J Zhu, M Sorel, J L O’Brien, M G Thompson, S Yu. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
https://doi.org/10.1126/science.1226528 pmid: 23087243
36 X Fang, G Yang, D Wei, D Wei, R Ni, W Ji, Y Zhang, X Hu, W Hu, Y Q Lu, S N Zhu, M Xiao. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO₃ crystal. Optics Letters, 2016, 41(6): 1169–1172 PMID:26977661
https://doi.org/10.1364/OL.41.001169
37 Y Wu, R Ni, Z Xu, Y Wu, X Fang, D Wei, X Hu, Y Zhang, M Xiao, S Zhu. Tunable third harmonic generation of vortex beams in an optical superlattice. Optics Express, 2017, 25(25): 30820–30826
https://doi.org/10.1364/OE.25.030820 pmid: 29245762
38 J Leach, S Keen, M J Padgett, C Saunter, G D Love. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Optics Express, 2006, 14(25): 11919–11924
https://doi.org/10.1364/OE.14.011919 pmid: 19529616
39 G C Berkhout, M W Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Physical Review Letters, 2008, 101(10): 100801
https://doi.org/10.1103/PhysRevLett.101.100801 pmid: 18851201
40 H I Sztul, R R Alfano. Double-slit interference with Laguerre-Gaussian beams. Optics Letters, 2006, 31(7): 999–1001
https://doi.org/10.1364/OL.31.000999 pmid: 16602188
41 J M Hickmann, E J Fonseca, W C Soares, S Chávez-Cerda. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 2010, 105(5): 053904
https://doi.org/10.1103/PhysRevLett.105.053904 pmid: 20867921
42 L E de Araujo, M E Anderson. Measuring vortex charge with a triangular aperture. Optics Letters, 2011, 36(6): 787–789
https://doi.org/10.1364/OL.36.000787 pmid: 21403683
43 C S Guo, S J Yue, G X Wei. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Applied Physics Letters, 2009, 94(23): 231104
https://doi.org/10.1063/1.3151920
44 R V Vinu, R K Singh. Determining helicity and topological structure of coherent vortex beam from laser speckle. Applied Physics Letters, 2016, 109(11): 111108 doi:10.1063/1.4962952
45 S Prabhakar, A Kumar, J Banerji, R P Singh. Revealing the order of a vortex through its intensity record. Optics Letters, 2011, 36(22): 4398–4400
https://doi.org/10.1364/OL.36.004398 pmid: 22089576
46 P Zhao, S Li, X Feng, K Cui, F Liu, W Zhang, Y Huang. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 2017, 42(6): 1080–1083
https://doi.org/10.1364/OL.42.001080 pmid: 28295097
47 A Dudley, I A Litvin, A Forbes. Quantitative measurement of the orbital angular momentum density of light. Applied Optics, 2012, 51(7): 823–833
https://doi.org/10.1364/AO.51.000823 pmid: 22410882
48 H L Zhou, D Z Fu, J J Dong, P Zhang, D X Chen, X L Cai, F L Li, X L Zhang. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light, Science & Applications, 2017, 6(4): e16251
https://doi.org/10.1038/lsa.2016.251 pmid: 30167243
49 I Basistiy, M Soskin, M Vasnetsov. Optical wavefront dislocations and their properties. Optics Communications, 1995, 119(5–6): 604–612
https://doi.org/10.1016/0030-4018(95)00267-C
50 W Lee, X C Yuan, K Dholakia. Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step. Optics Communications, 2004, 239(1–3): 129–135
https://doi.org/10.1016/j.optcom.2004.05.035
51 M Berry. Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A, Pure and Applied Optics, 2004, 6(2): 259–268
https://doi.org/10.1088/1464-4258/6/2/018
52 G Gbur. Fractional vortex Hilbert’s hotel. Optica, 2016, 3(3): 222–225
https://doi.org/10.1364/OPTICA.3.000222
53 S H Tao, W M Lee, X C Yuan. Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator. Optics Letters, 2003, 28(20): 1867–1869
https://doi.org/10.1364/OL.28.001867 pmid: 14587758
54 Y Fang, Q Lu, X Wang, W Zhang, L Chen. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale. Physical Review A, 2017, 95(2): 023821
https://doi.org/10.1103/PhysRevA.95.023821
55 M A Molchan, E V Doktorov, R A Vlasov. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere. Optics Letters, 2010, 35(5): 670–672
https://doi.org/10.1364/OL.35.000670 pmid: 20195314
56 Y Vasylkiv, I Skab, R Vlokh. Crossover regime of optical vortices generation via electro-optic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 1936–1945
https://doi.org/10.1364/JOSAA.31.001936 pmid: 25401432
57 Y Yang, X Zhu, J Zeng, X Lu, C Zhao, Y Cai. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 2018, 7(3): 677–682
https://doi.org/10.1515/nanoph-2017-0078
58 S S R Oemrawsingh, J A de Jong, X Ma, A Aiello, E R Eliel, G W ’t Hooft, J P Woerdman. High-dimensional mode analyzers for spatial quantum entanglement. Physical Review A, 2006, 73(3): 032339 doi:10.1103/PhysRevA.73.032339
59 C S Guo, Y N Yu, Z Hong. Optical sorting using an array of optical vortices with fractional topological charge. Optics Communications, 2010, 283(9): 1889–1893
https://doi.org/10.1016/j.optcom.2009.12.063
60 S Tao, X C Yuan, J Lin, X Peng, H Niu. Fractional optical vortex beam induced rotation of particles. Optics Express, 2005, 13(20): 7726–7731
https://doi.org/10.1364/OPEX.13.007726 pmid: 19498800
61 G Situ, G Pedrini, W Osten. Spiral phase filtering and orientation-selective edge detection/enhancement. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2009, 26(8): 1788–1797
https://doi.org/10.1364/JOSAA.26.001788 pmid: 19649113
62 J Strohaber, Y Boran, M Sayrac, L Johnson, F Zhu, A Kolomenskii, H Schuessler. Nonlinear mixing of optical vortices with fractional topological charge in Raman sideband generation. Journal of Optics, 2017, 19(1): 015607 doi:10.1088/2040-8986/19/1/015607
63 R Ni, Y Niu, L Du, X Hu, Y Zhang, S Zhu. Topological charge transfer in frequency doubling of fractional orbital angular momentum state. Applied Physics Letters, 2016, 109(15): 151103
https://doi.org/10.1063/1.4964712
64 M Born, E Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7nd ed. Cambridge: Cambridge University Press, 1999
65 E Wolf. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources. Journal of the Optical Society of America, 1982, 72(3): 343–351
https://doi.org/10.1364/JOSA.72.000343
66 E Wolf. New theory of partial coherence in the space-frequency domain. Part II: steady-state fields and higher-order correlations. Journal of the Optical Society of America A, Optics and Image Science, 1986, 3(1): 76–85
https://doi.org/10.1364/JOSAA.3.000076
67 E Wolf. Invariance of the spectrum of light on propagation. Physical Review Letters, 1986, 56(13): 1370–1372
https://doi.org/10.1103/PhysRevLett.56.1370 pmid: 10032650
68 F Gori. Collett-Wolf sources and multimode lasers. Optics Communications, 1980, 34(3): 301–305
https://doi.org/10.1016/0030-4018(80)90382-X
69 W H Carter, E Wolf. Coherence and radiometry with quasihomogeneous planar sources. Journal of the Optical Society of America, 1977, 67(6): 785–796 doi:10.1364/JOSA.67.000785
70 F Gori. Mode propagation of the field generated by Collett-Wolf Schell-model sources. Optics Communications, 1983, 46(3–4): 149–154
https://doi.org/10.1016/0030-4018(83)90266-3
71 F Gori, G Guattari, C Padovani. Modal expansion for Jo-correlated Schell-model sources. Optics Communications, 1987, 64(4): 311–316 doi:10.1016/0030-4018(87)90242-2
72 F Gori, G Guattari, C Palma, C Padovani. Observation of optical redshifts and blueshifts produced by source correlations. Optics Communications, 1988, 67(1): 1–4
https://doi.org/10.1016/0030-4018(88)90078-8
73 J C Ricklin, F M Davidson. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2002, 19(9): 1794–1802
https://doi.org/10.1364/JOSAA.19.001794 pmid: 12216873
74 J C Ricklin, F M Davidson. Atmospheric optical communication with a Gaussian Schell beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2003, 20(5): 856–866
https://doi.org/10.1364/JOSAA.20.000856 pmid: 12747433
75 Y Kato, K Mima, N Miyanaga, S Arinaga, Y Kitagawa, M Nakatsuka, C Yamanaka. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Physical Review Letters, 1984, 53(11): 1057–1060
https://doi.org/10.1103/PhysRevLett.53.1057
76 A Beléndez, L Carretero, A Fimia. The use of partially coherent light to reduce the efficiency of silver halide noise gratings. Optics Communications, 1993, 98(4–6): 236–240
https://doi.org/10.1016/0030-4018(93)90187-A
77 Y Cai, S Y Zhu. Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 2005, 71(5): 056607 doi:10.1103/PhysRevE.71.056607
pmid: 16089668
78 C Zhao, Y Cai, X Lu, H T Eyyuboğlu. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Optics Express, 2009, 17(3): 1753–1765
https://doi.org/10.1364/OE.17.001753 pmid: 19189005
79 J F Zhang, Z Y Wang, B Cheng, Q Y Wang, B Wu, X X Shen, L L Zheng, Y F Xu, Q Lin. Atom cooling by partially spatially coherent lasers. Physical Review A., 2013, 88(2): 023416
https://doi.org/10.1103/PhysRevA.88.023416
80 M S Zubairy, J K McIver. Second-harmonic generation by a partially coherent beam. Physical Review A, 1987, 36(1): 202–206
https://doi.org/10.1103/PhysRevA.36.202 pmid: 9898671
81 Y Cai, U Peschel. Second-harmonic generation by an astigmatic partially coherent beam. Optics Express, 2007, 15(23): 15480–15492
https://doi.org/10.1364/OE.15.015480 pmid: 19550833
82 T van Dijk, D G Fischer, T D Visser, E Wolf. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Physical Review Letters, 2010, 104(17): 173902
https://doi.org/10.1103/PhysRevLett.104.173902 pmid: 20482110
83 C Ding, Y Cai, O Korotkova, Y Zhang, L Pan. Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse. Optics Letters, 2011, 36(4): 517–519
https://doi.org/10.1364/OL.36.000517 pmid: 21326441
84 D Kermisch. Partially coherent image processing by laser scanning. Journal of the Optical Society of America, 1975, 65(8): 887–891
https://doi.org/10.1364/JOSA.65.000887
85 F Gori, M Santarsiero, R Borghi, S Vicalvi. Partially coherent sources with helicoidal modes. Optica Acta, 1998, 45(3): 539–554
86 G Gbur, T D Visser, E. Wolf'Hidden' singularities in partially coherent wavefields. Journal of Optics A Pure & Applied Optics, 2004, 6(5): S239–S242
87 T D Visser, G Gbur, E Wolf. Effect of the state of coherence on the three-dimensional spectral intensity distribution near focus. Optics Communications, 2002, 213(1–3): 13–19
https://doi.org/10.1016/S0030-4018(02)02043-6
88 Z Bouchal, J Perina. Non-diffracting beams with controlled spatial coherence. Optica Acta, 2002, 49(10): 1673–1689
89 G Gbur, T D Visser. Coherence vortices in partially coherent beams. Optics Communications, 2003, 222(1–6): 117–125 doi:10.1016/S0030-4018(03)01606-7
90 S A Ponomarenko. A class of partially coherent beams carrying optical vortices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(1): 150–156
https://doi.org/10.1364/JOSAA.18.000150 pmid: 11151992
91 I D Maleev, D M Palacios, A S Marathay, G A Swartzlander Jr. Spatial correlation vortices in partially coherent light: theory. Journal of the Optical Society of America B, Optical Physics, 2004, 21(11): 1895–1900
https://doi.org/10.1364/JOSAB.21.001895
92 C C Jeng, M F Shih, K Motzek, Y Kivshar. Partially incoherent optical vortices in self-focusing nonlinear media. Physical Review Letters, 2004, 92(4): 043904
https://doi.org/10.1103/PhysRevLett.92.043904 pmid: 14995376
93 T van Dijk, T D Visser. Evolution of singularities in a partially coherent vortex beam. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(4): 741–744 doi:10.1364/JOSAA.26.000741
pmid: 19340247
94 F Wang, S Zhu, Y Cai. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Optics Letters, 2011, 36(16): 3281–3283
https://doi.org/10.1364/OL.36.003281 pmid: 21847234
95 Y Yang, M Chen, M Mazilu, A Mourka, Y D Liu, K Dholakia. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity. New Journal of Physics, 2013, 15(11): 113053
https://doi.org/10.1088/1367-2630/15/11/113053
96 Z Qin, R Tao, P Zhou, X Xu, Z Liu. Propagation of partially coherent Bessel–Gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Optics & Laser Technology, 2014, 56(33): 182–188
https://doi.org/10.1016/j.optlastec.2013.08.002
97 Z Zhang, H Fan, H F Xu, J Qu, W Huang. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic. Journal of Optics, 2015, 17(6): 065611
https://doi.org/10.1088/2040-8978/17/6/065611
98 R K Singh, A M Sharma, P Senthilkumaran. Vortex array embedded in a partially coherent beam. Optics Letters, 2015, 40(12): 2751–2754
https://doi.org/10.1364/OL.40.002751 pmid: 26076253
99 D Liu, Y Wang, H Yin. Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Applied Optics, 2015, 54(35): 10510–10516
https://doi.org/10.1364/AO.54.010510 pmid: 26836879
100 M Cheng, L Guo, J Li, Q Huang, Q Cheng, D Zhang. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean. Applied Optics, 2016, 55(17): 4642–4648
https://doi.org/10.1364/AO.55.004642 pmid: 27409021
101 Y Zhang, D Ma, Z Zhou, X Yuan. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Applied Optics, 2017, 56(10): 2922–2926
https://doi.org/10.1364/AO.56.002922 pmid: 28375262
102 X Liu, X Peng, L Liu, G Wu, C Zhao, F Wang, Y Cai. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110(18): 181104 doi:10.1063/1.4982786
103 C S D Stahl, G Gbur. Partially coherent vortex beams of arbitrary order. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(10): 1793–1799
https://doi.org/10.1364/JOSAA.34.001793 pmid: 29036049
104 D Liu, H Yin, G Wang, Y Wang. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Applied Optics, 2017, 56(31): 8785–8792
https://doi.org/10.1364/AO.56.008785 pmid: 29091693
105 A S Ostrovsky, J García-García, C Rickenstorff-Parrao, M A Olvera-Santamaría. Partially coherent diffraction-free vortex beams with a Bessel-mode structure. Optics Letters, 2017, 42(24): 5182–5185
https://doi.org/10.1364/OL.42.005182 pmid: 29240168
106 F Gori, M Santarsiero. Devising genuine spatial correlation functions. Optics Letters, 2007, 32(24): 3531–3533
https://doi.org/10.1364/OL.32.003531 pmid: 18087532
107 F Gori, V Ramirezsanchez, M Santarsiero, T Shirai. On genuine cross-spectral density matrices. Journal of Optics A, 2009, 11(8): 085706
https://doi.org/10.1088/1464-4258/11/8/085706
108 Y Chen, L Liu, F Wang, C Zhao, Y Cai. Elliptical Laguerre-Gaussian correlated Schell-model beam. Optics Express, 2014, 22(11): 13975–13987
https://doi.org/10.1364/OE.22.013975 pmid: 24921589
109 Z Tong, O Korotkova. Electromagnetic nonuniformly correlated beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2012, 29(10): 2154–2158
https://doi.org/10.1364/JOSAA.29.002154 pmid: 23201663
110 H Lajunen, T Saastamoinen. Non-uniformly correlated partially coherent pulses. Optics Express, 2013, 21(1): 190–195
https://doi.org/10.1364/OE.21.000190 pmid: 23388910
111 S Sahin, O Korotkova. Light sources generating far fields with tunable flat profiles. Optics Letters, 2012, 37(14): 2970–2972
https://doi.org/10.1364/OL.37.002970 pmid: 22825195
112 Y Zhang, L Liu, C Zhao, Y Cai. Multi-Gaussian Schell-model vortex beam. Physics Letters A, 2014, 378(9): 750–754 doi:10.1016/j.physleta.2013.12.039
113 Y Chen, F Wang, C Zhao, Y Cai. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 2014, 22(5): 5826–5838
https://doi.org/10.1364/OE.22.005826 pmid: 24663920
114 H Liu, D Chen, J Xia, Y Lü, L Zhang, X Pu. Influences of uniaxial crystal on partially coherent multi-Gaussian Schell-model vortex beams. Optical Engineering (Redondo Beach, Calif.), 2016, 55(11): 116101
https://doi.org/10.1117/1.OE.55.11.116101
115 X Liu, F Wang, L Liu, C Zhao, Y Cai. Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(11): 2058–2065
https://doi.org/10.1364/JOSAA.32.002058 pmid: 26560920
116 Y Zhang, L Pan, Y Cai. Propagation of Correlation Singularities of a Partially Coherent Laguerre-Gaussian Electromagnetic Beam in a Uniaxial Crystal. IEEE Photonics Journal, 2017, 9(4): 1–13
https://doi.org/10.1109/JPHOT.2017.2717843
117 L Guo, Y Chen, X Liu, L Liu, Y Cai. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Optics Express, 2016, 24(13): 13714–13728
https://doi.org/10.1364/OE.24.013714 pmid: 27410535
118 C Zhao, Y Cai. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Optics Letters, 2011, 36(12): 2251–2253
https://doi.org/10.1364/OL.36.002251 pmid: 21685983
119 X Liu, Y Shen, L Liu, F Wang, Y Cai. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Optics Letters, 2013, 38(24): 5323–5326
https://doi.org/10.1364/OL.38.005323 pmid: 24322248
120 J Zeng, X Liu, F Wang, C Zhao, Y Cai. Partially coherent fractional vortex beam. Optics Express, 2018, 26(21): 26830–26844 doi:10.1364/OE.26.026830
pmid: 30469761
121 B Perez-Garcia, A Yepiz, R I Hernandez-Aranda, A Forbes, G A Swartzlander. Digital generation of partially coherent vortex beams. Optics Letters, 2016, 41(15): 3471–3474
https://doi.org/10.1364/OL.41.003471 pmid: 27472596
122 R Liu, F Wang, D Chen, Y Wang, Y Zhou, H Gao, P Zhang, F Li. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment. Applied Physics Letters, 2016, 108(5): 051107 doi:10.1063/1.4941422
123 H D Pires, J Woudenberg, M P van Exter. Measurements of spatial coherence of partially coherent light with and without orbital angular momentum. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(12): 2630–2637
https://doi.org/10.1364/JOSAA.27.002630 pmid: 21119748
124 H D Pires, J Woudenberg, M P van Exter. Measurement of the orbital angular momentum spectrum of partially coherent beams. Optics Letters, 2010, 35(6): 889–891
https://doi.org/10.1364/OL.35.000889 pmid: 20237633
125 C Zhao, F Wang, Y Dong, Y Han, Y Cai. Effect of spatial coherence on determining the topological charge of a vortex beam. Applied Physics Letters, 2012, 101(26): 261104 doi:10.1063/1.4773236
126 Y Yang, M Mazilu, K Dholakia. Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions. Optics Letters, 2012, 37(23): 4949–4951
https://doi.org/10.1364/OL.37.004949 pmid: 23202100
127 A Y Escalante, B Perezgarcia, R I Hernandezaranda, G A Swartzlander. Determination of angular momentum content in partially coherent beams through cross correlation measurements. In: Proceedings of SPIE Laser Beam Shaping. SPIE, 2013, 884302
128 V V Kotlyar, A A Almazov, S N Khonina, V A Soifer, H Elfstrom, J Turunen. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(5): 849–861 doi:10.1364/JOSAA.22.000849
pmid: 15898544
129 F Wang, Y Cai, O Korotkova. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Optics Express, 2009, 17(25): 22366–22379
https://doi.org/10.1364/OE.17.022366 pmid: 20052160
130 M R Dennis, K O’Holleran, M J Padgett. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. Progress in Optics, 2009, 53: 293–363 doi:10.1016/S0079-6638(08)00205-9
131 G V Bogatyryova, C V Fel’de, P V Polyanskii, S A Ponomarenko, M S Soskin, E Wolf. Partially coherent vortex beams with a separable phase. Optics Letters, 2003, 28(11): 878–880
https://doi.org/10.1364/OL.28.000878 pmid: 12816232
132 L Mandel, E Wolf. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 2001, 1–1194
133 D M Palacios, I D Maleev, A S Marathay, G A Swartzlander Jr. Spatial correlation singularity of a vortex field. Physical Review Letters, 2004, 92(14): 143905
https://doi.org/10.1103/PhysRevLett.92.143905 pmid: 15089540
134 E Wolf. Introduction to the Theory of Coherence and Polarization of Light. Cambridge: Cambridge University Press, 2007
135 Y Cai, Y Chen, F Wang. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(9): 2083–2096
https://doi.org/10.1364/JOSAA.31.002083 pmid: 25401450
136 Y X Ren, R D Lu, L Gong. Tailoring light with a digital micromirror device. Annalen der Physik, 2015, 527(7–8): 447–470
https://doi.org/10.1002/andp.201500111
137 P De Santis, F Gori, G Guattari, C Palma. An example of a Collett-Wolf source. Optics Communications, 1979, 29(3): 256–260
https://doi.org/10.1016/0030-4018(79)90094-4
138 A S Ostrovsky, E H García. Modulation of spatial coherence of optical field by means of liquid crystal light modulator. Revista Mexicana de Física, 2005, 51(5): 442–446
139 X Liu, T Wu, L Liu, C Zhao, Y Cai. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam. Chinese Optics Letters, 2017, 15(3): 030002–030006 doi:10.3788/COL201715.030002
140 F Wang, X Liu, Y Yuan, Y Cai. Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 2013, 38(11): 1814–1816
https://doi.org/10.1364/OL.38.001814 pmid: 23722753
141 J Chen, X Liu, J Yu, Y Cai. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam. Applied Physics B, Lasers and Optics, 2016, 122(7): 201 doi:10.1007/s00340-016-6470-4
142 P V Polyanskii. Some current views on singular optics. In: Proceedings of SPIE 6th International Conference on Correlation Optics. SPIE, 2004, 31–41
143 M Soskin, S V Boriskina, Y Chong, M R Dennis, A Desyatnikov. Singular optics and topological photonics. Journal of Optics, 2017, 19(1): 010401
https://doi.org/10.1088/2040-8986/19/1/010401
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed