Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals
Chunxiang ZENG, Zeqing WANG, Yingmao XIE
Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals
The propagation properties of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals are studied by using the 4×4 transmission matrix method. The structure models of reflection-type one-dimensional magnetophotonic crystals are designed, the magnetic field direction control characteristics of reflection spectrum and Kerr rotation angle are discussed, and the effect of applied magnetic field direction and strength on reflection spectrum and Kerr rotation angle are analyzed. The results show that the non-diagonal elements in the dielectric constant of magneto optical materials change when the angle ϕ between applied magnetic field and optical path changes, the reflectivity and Kerr rotation angle decrease when the angle ϕ increases; when the applied magnetic field strength changes, the reflectivity and Kerr rotation angle increase when the applied magnetic field strength increases; by adjusting the angle ϕ and strength of the applied magnetic field, the rotation angle of Kerr can be adjusted to 45°, and a more flat reflection spectrum can be obtained by designing the appropriate structure.
magnetophotonic crystal / 4×4 transfer matrix method / magneto-optical effect / Kerr rotation angle
[1] |
Vasiliev M, Alameh K E, Belotelov V I, Kotov V A, Zvezdin A K. Magnetic photonic crystals: 1-D optimization and applications for the integrated optics devices. Journal of Lightwave Technology, 2006, 24(5): 2156–2162
CrossRef
Google scholar
|
[2] |
Wang H, Wang G, Han Y, Chen F. Polarization gaps in one-dimensional magnetic photonic crystal. Optics Communications, 2014, 310: 199–203
CrossRef
Google scholar
|
[3] |
Ghanaatshoar M, Zamani M. Magneto-optical magnetic field sensors based on compact magnetophotonic crystals. Journal of Superconductivity and Novel Magnetism, 2015, 28(4): 1365–1370
CrossRef
Google scholar
|
[4] |
Li J, Tang T, Zhang Y, Luo L, Sun P. Magneto-plasmonic sensor with one dimensional photonic crystal for methane detection. Optik (Stuttgart), 2018, 155: 74–80
CrossRef
Google scholar
|
[5] |
Inoue M, Fujii T. A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures. Journal of Applied Physics, 1997, 81(8): 5659–5661
CrossRef
Google scholar
|
[6] |
Sharifian M, Ghadiri H, Zamani M, Ghanaatshoar M. Influence of thickness error on the operation of adjustable magneto-optical isolators. Applied Optics, 2012, 51(20): 4873–4878
CrossRef
Pubmed
Google scholar
|
[7] |
Liu J, Wang S, Deng S, Wang Y, Zhang J. Polarization research of YIG based two-dimensional magneto photonic crystals. Optics Communications, 2017, 402: 319–325
CrossRef
Google scholar
|
[8] |
Kato H, Inoue M. Reflection-mode operation of one-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices. Journal of Applied Physics, 2002, 91(10): 7017–7019
CrossRef
Google scholar
|
[9] |
Ghanaatshoar M, Zamani M, Alisafaee H. Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance. Optics Communications, 2011, 284(14): 3635–3638
CrossRef
Google scholar
|
[10] |
Zamani M, Eftekhari S, Ghanaatshoar M. Broadband flat-top spectra of transmittance and faraday rotation in 1D magnetophotonic crystals containing double-negative materials. Journal of Superconductivity and Novel Magnetism, 2015, 28(8): 2613–2619
CrossRef
Google scholar
|
[11] |
Zamani M. All superconducting photonic crystals with wide-band flat-top responses in visible region. Journal of Superconductivity and Novel Magnetism, 2015, 28(12): 3513–3518
CrossRef
Google scholar
|
[12] |
Berreman D W. Optics in stratified and anisotropic media: 4×4-matrix formulation. Journal of the Optical Society of America, 1972, 62(4): 502–510
CrossRef
Google scholar
|
[13] |
Chen C J, Lien A, Nathan M I. 4 × 4 and 2 × 2 matrix formulations for the optics in stratified and biaxial media. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 1997, 14(11): 3125–3134
CrossRef
Google scholar
|
[14] |
Fei H, Wu J, Yang Y, Liu X, Chen Z. Magneto-optical isolators with flat-top responses based on one-dimensional magneto-photonic crystals. Photonics and Nanostructures, 2015, 17: 15–21
CrossRef
Google scholar
|
[15] |
Zamani M, Ghanaatshoar M. Design and error analysis of adjustable reflection-type magneto-optical photonic crystals for optical isolator application. Journal of Magnetism and Magnetic Materials, 2014, 358–359: 76–81
CrossRef
Google scholar
|
[16] |
Abdi-Ghaleh R, Namdar A. Circular polarization bandpass filters based on one-dimensional magnetophotonic crystals. Journal of Modern Optics, 2013, 60(19): 1619–1626
CrossRef
Google scholar
|
[17] |
Zamani M, Ghanaatshoar M. High performance reflection-type 1D magnetophotonic crystals with flat-top responses. Photonics and Nanostructures, 2013, 11(3): 234–240
CrossRef
Google scholar
|
/
〈 | 〉 |