Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses

Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU

PDF(957 KB)
PDF(957 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (4) : 392-396. DOI: 10.1007/s12200-019-0869-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses

Author information +
History +

Abstract

Ion implantation has played a unique role in the fabrication of optical waveguide devices. Tb3+-doped aluminum borosilicate (TDAB) glass has been considered as an important magneto-optical material. In this work, near-infrared waveguides have been manufactured by the (5.5+ 6.0) MeV C3+ ion implantation with doses of (4.0+ 8.0) × 1013 ions·cm2 in the TDAB glass. The modes propagated in the TDAB glass waveguide were recorded by a prism-coupling system. The finite-difference beam propagation method (FD-BPM) was carried out to simulate the guiding characteristics of the TDAB glass waveguide. The TDAB glass waveguide allows the light propagation with a single-mode at 1.539 mm and can serve as a potential candidate for future waveguide isolators.

Keywords

Tb3+-doped aluminum borosilicate (TDAB) glass / optical waveguide / ion implantation

Cite this article

Download citation ▾
Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses. Front. Optoelectron., 2019, 12(4): 392‒396 https://doi.org/10.1007/s12200-019-0869-6

References

[1]
Tan Y, Ma L N, Akhmadaliev S, Zhou S Q, Chen F. Ion irradiated Er:YAG ceramic cladding waveguide amplifier in C and L bands. Optical Materials Express, 2016, 6(3): 711–716
CrossRef Google scholar
[2]
Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, Pernice W H P. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 2015, 9(11): 725–732
CrossRef Google scholar
[3]
Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104
CrossRef Pubmed Google scholar
[4]
Hu H, Ricken R, Sohler W. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Applied Physics B, Lasers and Optics, 2010, 98(4): 677–679
CrossRef Google scholar
[5]
Yang X F, Zhang Z B, Wong W H, Yu D Y, Pun E Y B, Zhang D L. Refractive index change in Ti-diffused near-stoichiometric LiTaO3 waveguide and its relation to Ti-concentration. Materials Chemistry and Physics, 2018, 203: 340–345
CrossRef Google scholar
[6]
Ma L N, Tan Y, Ghorbani-Asl M, Boettger R, Kretschmer S, Zhou S, Huang Z, Krasheninnikov A V, Chen F. Tailoring the optical properties of atomically-thin WS2 via ion irradiation. Nanoscale, 2017, 9: 11027–11034
[7]
Meriche F, Touam T, Chelouche A, Dehimi M, Solard J, Fischer A, Boudrioua A, Peng L H. Post-annealing effects on the physical and optical waveguiding properties of RF sputtered ZnO thin films. Electronic Materials Letters, 2015, 11(5): 862–870
CrossRef Google scholar
[8]
Wang Y N, Luo Y, Sun C Z, Xiong B, Wang J, Hao Z B, Han Y J, Wang L, Li H T. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Frontiers of Optoelectronics, 2016, 9(2): 323–329
CrossRef Google scholar
[9]
Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews, 2012, 6(5): 622–640
CrossRef Google scholar
[10]
Jaque D, Chen F. High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides. Applied Physics Letters, 2009, 94(1): 011109
CrossRef Google scholar
[11]
Zhao J H, Zhang L, Wang X L. Waveguide and Raman spectroscopic visualization in C-implanted Ca0.20Ba0.80Nb2O6 crystal. Optical Materials Express, 2014, 4(4): 864–869
CrossRef Google scholar
[12]
Wang L, Haunhorst C E, Volk M F, Chen F, Kip D. Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals. Optics Express, 2015, 23(23): 30188–30194
CrossRef Pubmed Google scholar
[13]
Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S, Nunzi-Conti G. Leaky mode suppression in planar optical waveguides written in Er:TeO2–WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions. Nuclear Instruments and Methods in Physical Research Section B, 2014, 326: 81–85
CrossRef Google scholar
[14]
Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J, Trejo-Luna R. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Optics & Laser Technology, 2016, 79: 132–136
CrossRef Google scholar
[15]
Bai M Y, Zhao Y L, Jiao B B, Zhu L J, Zhang G D, Wang L. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments. International Journal of Modern Physics B, 2018, 32(14): 1850170
CrossRef Google scholar
[16]
Shen X L, Zhu Q F, Zheng R L, Lv P, Guo H T, Liu C X. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation. Results in Physics, 2018, 8: 352–356
CrossRef Google scholar
[17]
Li W N, Zou K S, Lu M, Peng B, Zhao W. Faraday glasses with a large size and high performance. International Journal of Applied Ceramic Technology, 2010, 7(3): 369–374
CrossRef Google scholar
[18]
Stadler B J H, Mizumoto T. Integrated magneto-optical materials and isolators: a review. IEEE Photonics Journal, 2014, 6(1): 1–15
CrossRef Google scholar
[19]
Srinivasan K, Stadler B J H. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Optical Materials Express, 2018, 8(11): 3307–3318
CrossRef Google scholar
[20]
Liu C X, Fu L L, Zhang L L, Guo H T, Li W N, Lin S B, Wei W. Carbon-implanted monomode waveguides in magneto-optical glasses for waveguide isolators. Applied Physics A, Materials Science & Processing, 2016, 122(2): 94
CrossRef Google scholar
[21]
Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403
CrossRef Google scholar
[22]
Ziegler J F. SRIM-The Stopping and Range of Ions in Matter
[23]
Cui X J, Wang L L, Zhang H K, Chen T. KTiOPO4 double barrier optical waveguides produced by Rb+-K+ ion exchange and subsequent He+-ion irradiation. Optical Engineering (Redondo Beach, Calif.), 2016, 55(3): 036107
CrossRef Google scholar
[24]
Wang Y, Shen X L, Zheng R L, Lv P, Liu C X, Guo H T. Optical planar waveguides fabricated by using carbon ion implantation in terbium gallium garnet. Journal of the Korean Physical Society, 2018, 72(7): 765–769
CrossRef Google scholar
[25]
Rsoft Design Group. Computer software BeamPROP version 8.0
[26]
Tan Y, de Aldana J R V, Chen F. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm. Optical Engineering (Redondo Beach, Calif.), 2014, 53(10): 107109
CrossRef Google scholar
[27]
Liu C X, Fu L L, Cheng L L, Zhu X F, Lin S B, Zheng R L, Zhou Z G, Guo H T, Li W N, Wei W. Optimization effect of annealing treatment on oxygen-implanted Nd:CNGG waveguides. Modern Physics Letters B, 2016, 30(20): 1650261
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 51502144 and 61475189).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(957 KB)

Accesses

Citations

Detail

Sections
Recommended

/