Robot visual guide with Fourier-Mellin based visual tracking

Chao PENG, Danhua CAO, Yubin WU, Qun YANG

PDF(3230 KB)
PDF(3230 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (4) : 413-421. DOI: 10.1007/s12200-019-0862-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Robot visual guide with Fourier-Mellin based visual tracking

Author information +
History +

Abstract

Robot vision guide is an important research area in industrial automation, and image-based target pose estimation is one of the most challenging problems. We focus on target pose estimation and present a solution based on the binocular stereo vision in this paper. To improve the robustness and speed of pose estimation, we propose a novel visual tracking algorithm based on Fourier-Mellin transform to extract the target region. We evaluate the proposed tracking algorithm on online tracking benchmark-50 (OTB-50) and the results show that it outperforms other lightweight trackers, especially when the target is rotated or scaled. The final experiment proves that the improved pose estimation approach can achieve a position accuracy of 1.84 mm and a speed of 7 FPS (frames per second). Besides, this approach is robust to the variances of illumination and can work well in the range of 250-700 lux.

Keywords

robot visual guide / target pose estimation / stereo vision / visual tracking / Fourier-Mellin transform (FMT)

Cite this article

Download citation ▾
Chao PENG, Danhua CAO, Yubin WU, Qun YANG. Robot visual guide with Fourier-Mellin based visual tracking. Front. Optoelectron., 2019, 12(4): 413‒421 https://doi.org/10.1007/s12200-019-0862-0

References

[1]
Agrawal A, Sun Y, Barnwell J, Raskar R. Vision-guided robot system for picking objects by casting shadows. International Journal of Robotics Research, 2010, 29(2-3): 155–173
[2]
Taryudi,Wang M S. 3D object pose estimation using stereo vision for object manipulation system. In: Proceedings of International Conference on Applied System Innovation. Sapporo: IEEE, 2017, 1532–1535
[3]
Dinham M, Fang G, Zou J J. Experiments on automatic seam detection for a MIG welding robot. In: Proceedings of International Conference on Artificial Intelligence and Computational Intelligence. Berlin: Springer, 2011, 390–397
[4]
Ryberg A, Ericsson M, Christiansson A K, Eriksson K, Nilsson J, Larsson M. Stereo vision for path correction in off-line programmed robot welding. In: Proceedings of IEEE International Conference on Industrial Technology. Vina del Mar: IEEE, 2010, 1700–1705
[5]
Dinham M, Fang G. Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding. Robotics and Computer-integrated Manufacturing, 2013, 29(5): 288–301
[6]
Yun W H, Lee J, Lee J H, Kim J. Object recognition and pose estimation for modular manipulation system: overview and initial results. In: Proceedings of International Conference on Ubiquitous Robots and Ambient Intelligence. Jeju: IEEE, 2017, 198–201
[7]
Dong L, Yu X, Li L, Hoe J K E. HOG based multi-stage object detection and pose recognition for service robot. In: Proceedings of 11th International Conference on Control Automation Robotics & Vision, Singapore: IEEE, 2010, 2495–2500
[8]
Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 4293–4302
[9]
Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks. In: Proceedings of European Conference on Computer Vision. Berlin: Springer, 2016, 749–765
[10]
Henriques J F, Rui C, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596
[11]
Stricker D. Tracking with reference images:a real-time and markerless tracking solution for out-door augmented reality applications. In: Proceedings of Conference on Virtual Reality, Archeology, and Cultural Heritage. Glyfada: DBLP, 2001, 77–82
[12]
Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848
[13]
Yang B, Yan J, Lei Z, Li S. Aggregate channel features for multi-view face detection. In: Proceedings of IEEE International Joint Conference on Biometrics. Clearwater: IEEE, 2014, 1–8
[14]
Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition. San Diego: IEEE, 2005, 807–814
[15]
Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334
[16]
Li J, Zhao H, Jiang T, Zhou X. Development of a 3D high-precise positioning system based on a planar target and two CCD cameras. In: Proceedings of International Conference on Intelligent Robotics and Applications. Berlin: Springer, 2008, 475–484
[17]
Magnusson M, Andreasson H, Nüchter A, Lilienthal A J. Appearance-based loop detection from 3D laser data using the normal distributions transform. Journal of Field Robotics, 2010, 26(11–12):892–914
[18]
Li Y, Liu G. Learning a scale-and-rotation correlation filter for robust visual tracking. In: Proceedings of IEEE International Conference on Image Processing. Phoenix: IEEE, 2016, 454–458
[19]
Zhang K, Zhang L, Yang M H. Fast Compressive Tracking. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(10):2002-2015.
[20]
Lu H, Jia X, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012, 1822–1829
[21]
Dinh T B, Vo N, Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs: IEEE, 2011, 1177–1184

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3230 KB)

Accesses

Citations

Detail

Sections
Recommended

/