Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin
Jiayu LI, Yijun XIE, Ping SUN
Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin
Terahertz pulse imaging of cutaneous malignant melanoma dehydrated by ethanol and embedded in paraffin was carried out across a frequency range of 0.2–1.4 THz. First, the tissue images based on the time-domain electric-field amplitude information were acquired. Then the areas of normal and cancerous tissues were determined using multi-scale, multi-azimuth and multi-structural element mathematical morphology. The physical meaning of the image was analyzed by calculation of the refractive index and absorption coefficient of cutaneous malignant melanoma in different areas. The refractive index of both normal and cancerous tissues showed anomalous dispersion. The refractive index of cancerous tissues tended to vary between 0.2 and 0.7 THz, while that of normal and fat tissues remain almost unchanged. The absorption of cancerous tissues was higher, with a maximum at 0.37 THz. We concluded that both the refractive index and absorption coefficient differ considerably between normal and cancerous tissues, and the areas of normal and abnormal tissues can be identified using THz pulse imaging combined with mathematical morphology. The method for edge detection of terahertz pulse imaging of cutaneous malignant melanoma provides a reference for the safe surgical removal of malignant tumors.
terahertz pulse imaging / edge detection / mathematical morphology / cutaneous malignant melanoma / refractive index / absorption coefficient
[1] |
Bajwa N, Au J, Jarrahy R, Sung S, Fishbein M C, Riopelle D, Ennis D B, Aghaloo T, St John M A, Grundfest W S, Taylor Z D. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomedical Optics Express, 2017, 8(1): 460–474
CrossRef
Pubmed
Google scholar
|
[2] |
Grootendorst M R, Fitzgerald A J, Brouwer de Koning S G, Santaolalla A, Portieri A, Van Hemelrijck M, Young M R, Owen J, Cariati M, Pepper M, Wallace V P, Pinder S E, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomedical Optics Express, 2017, 8(6): 2932–2945
CrossRef
Pubmed
Google scholar
|
[3] |
Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Scientific Reports 2016, 6: 30124
|
[4] |
Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park D W, Noh S K, Kang S G, Huh Y M, Son J H, Suh J S. Study of freshly excised brain tissues using terahertz imaging. Biomedical Optics Express, 2014, 5(8): 2837–2842
CrossRef
Pubmed
Google scholar
|
[5] |
Tewari P, Kealey C P, Bennett D B, Bajwa N, Barnett K S, Singh R S, Culjat M O, Stojadinovic A, Grundfest W S, Taylor Z D. In vivo terahertz imaging of rat skin burns. Journal of Biomedical Optics, 2012, 17(4): 040503
CrossRef
Pubmed
Google scholar
|
[6] |
Arbab M H, Dickey T C, Winebrenner D P, Chen A, Klein M B, Mourad P D. Terahertz reflectometry of burn wounds in a rat model. Biomedical Optics Express, 2011, 2(8): 2339–2342
CrossRef
Pubmed
Google scholar
|
[7] |
Park G S, Kim Y H, Han H, Han J K, Ahn J, Son J H, Park W Y, Jeong Y U. Convergence of terahertz sciences in biomedical systems. Berlin: Springer, 2012, 351
|
[8] |
Wallace V P, Macpherson E, Zeitler J A, Reid C. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(12): 3120–3133
CrossRef
Pubmed
Google scholar
|
[9] |
World Health Organization. http://www.who.int/bulletin/volumes/87/8/09-030809/zh/
|
[10] |
Dzwierzynski W W. Managing malignant melanoma. Plastic and Reconstructive Surgery, 2013, 132(3): 446e–460e
CrossRef
Pubmed
Google scholar
|
[11] |
Perera E, Gnaneswaran N, Jennens R, Sinclair R. Malignant Melanoma. Healthcare (Basel, Switzerland), 2013, 2(1): 1–19
CrossRef
Pubmed
Google scholar
|
[12] |
Grant-Kels J M, Bason E T, Grin C M. The misdiagnosis of malignant melanoma. Journal of the American Academy of Dermatology, 1999, 40(4): 539–548
CrossRef
Pubmed
Google scholar
|
[13] |
Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863
CrossRef
Pubmed
Google scholar
|
[14] |
Wallace V P, Fitzgerald A J, Pickwell E, Pye R J, Taday P F, Flanagan N, Ha T. Terahertz pulsed spectroscopy of human Basal cell carcinoma. Applied Spectroscopy, 2006, 60(10): 1127–1133
CrossRef
Pubmed
Google scholar
|
[15] |
Sim Y C, Ahn K M, Park J Y, Park C S, Son J H. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 779–784
CrossRef
Pubmed
Google scholar
|
[16] |
Fan S, Ung B S Y, Parrott E P J, Wallace V P, Pickwell-Macpherson E. In vivo terahertz reflection imaging of human scars during and after the healing process. Journal of Biophotonics, 2017, 10(9): 1143–1151
Pubmed
|
[17] |
Rath T. Malignant melanoma. European Surgery, 2006, 38(2): 145–148
CrossRef
Google scholar
|
[18] |
Shih F. Mathematical Morphology. London: Wiley-IEEE Press, 2010, 3: 63
|
[19] |
Dufour A, Tankyevych O, Naegel B, Talbot H, Ronse C, Baruthio J, Dokládal P, Passat N. Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Medical Image Analysis, 2013, 17(2): 147–164
CrossRef
Pubmed
Google scholar
|
[20] |
Merazi-Meksen T, Boudraa M, Boudraa B. Mathematical morphology for TOFD image analysis and automatic crack detection. Ultrasonics, 2014, 54(6): 1642–1648
CrossRef
Pubmed
Google scholar
|
[21] |
Li Y, Liang X, Zuo M J. A new strategy of using a time-varying structure element for mathematical morphological filtering. Measurement, 2017, 106: 53–65
CrossRef
Google scholar
|
[22] |
Sy S, Huang S, Wang Y X, Yu J, Ahuja A T, Zhang Y T, Pickwell-MacPherson E. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Physics in Medicine and Biology, 2010, 55(24): 7587–7596
CrossRef
Pubmed
Google scholar
|
[23] |
Huang S Y, Wang Y X J, Yeung D K W, Ahuja A T, Zhang Y T, Pickwell-Macpherson E. Tissue characterization using terahertz pulsed imaging in reflection geometry. Physics in Medicine and Biology, 2009, 54(1): 149–160
CrossRef
Pubmed
Google scholar
|
[24] |
Wortsman X, Wortsman J. Clinical usefulness of variable-frequency ultrasound in localized lesions of the skin. Journal of the American Academy of Dermatology, 2010, 62(2): 247–256
CrossRef
Pubmed
Google scholar
|
[25] |
Higgins H W 2nd, Lee K C, Galan A, Leffell D J. Melanoma in situ: Part I. Epidemiology, screening, and clinical features. Journal of the American Academy of Dermatology, 2015, 73(2): 181–190, quiz 191–192
CrossRef
Pubmed
Google scholar
|
[26] |
Kelleher F C, McArthur G A. Targeting NRAS in melanoma. Cancer Journal (Sudbury, Mass.), 2012, 18(2): 132–136
CrossRef
Pubmed
Google scholar
|
[27] |
Forman S B, Ferringer T C, Peckham S J, Dalton S R, Sasaki G T, Libow L F, Elston D M. Is superficial spreading melanoma still the most common form of malignant melanoma? Journal of the American Academy of Dermatology, 2008, 58(6): 1013–1020
CrossRef
Pubmed
Google scholar
|
[28] |
Oba J, Nakahara T, Hayashida S, Kido M, Xie L, Takahara M, Uchi H, Miyazaki S, Abe T, Hagihara A, Moroi Y, Furue M. Expression of CD10 predicts tumor progression and unfavorable prognosis in malignant melanoma. Journal of the American Academy of Dermatology, 2011, 65(6): 1152–1160
CrossRef
Pubmed
Google scholar
|
[29] |
Al Dhaybi R, Agoumi M, Gagné I, McCuaig C, Powell J, Kokta V. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. Journal of the American Academy of Dermatology, 2011, 65(2): 357–363
CrossRef
Pubmed
Google scholar
|
[30] |
Quatresooz P, Piérard G E. Malignant melanoma: from cell kinetics to micrometastases. Journal of the American Academy of Dermatology, 2011, 12(2): 77–86
CrossRef
Pubmed
Google scholar
|
[31] |
Wititsuwannakul J, Mason A R, Klump V R, Lazova R. Neuropilin-2 as a useful marker in the differentiation between Spitzoid malignant melanoma and Spitz nevus. Journal of the American Academy of Dermatology, 2013, 68(1): 129–137
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |