Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin

Jiayu LI, Yijun XIE, Ping SUN

PDF(2053 KB)
PDF(2053 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (3) : 317-323. DOI: 10.1007/s12200-019-0861-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin

Author information +
History +

Abstract

Terahertz pulse imaging of cutaneous malignant melanoma dehydrated by ethanol and embedded in paraffin was carried out across a frequency range of 0.2–1.4 THz. First, the tissue images based on the time-domain electric-field amplitude information were acquired. Then the areas of normal and cancerous tissues were determined using multi-scale, multi-azimuth and multi-structural element mathematical morphology. The physical meaning of the image was analyzed by calculation of the refractive index and absorption coefficient of cutaneous malignant melanoma in different areas. The refractive index of both normal and cancerous tissues showed anomalous dispersion. The refractive index of cancerous tissues tended to vary between 0.2 and 0.7 THz, while that of normal and fat tissues remain almost unchanged. The absorption of cancerous tissues was higher, with a maximum at 0.37 THz. We concluded that both the refractive index and absorption coefficient differ considerably between normal and cancerous tissues, and the areas of normal and abnormal tissues can be identified using THz pulse imaging combined with mathematical morphology. The method for edge detection of terahertz pulse imaging of cutaneous malignant melanoma provides a reference for the safe surgical removal of malignant tumors.

Keywords

terahertz pulse imaging / edge detection / mathematical morphology / cutaneous malignant melanoma / refractive index / absorption coefficient

Cite this article

Download citation ▾
Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin. Front. Optoelectron., 2019, 12(3): 317‒323 https://doi.org/10.1007/s12200-019-0861-1

References

[1]
Bajwa N, Au J, Jarrahy R, Sung S, Fishbein M C, Riopelle D, Ennis D B, Aghaloo T, St John M A, Grundfest W S, Taylor Z D. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomedical Optics Express, 2017, 8(1): 460–474
CrossRef Pubmed Google scholar
[2]
Grootendorst M R, Fitzgerald A J, Brouwer de Koning S G, Santaolalla A, Portieri A, Van Hemelrijck M, Young M R, Owen J, Cariati M, Pepper M, Wallace V P, Pinder S E, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomedical Optics Express, 2017, 8(6): 2932–2945
CrossRef Pubmed Google scholar
[3]
Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Scientific Reports 2016, 6: 30124
[4]
Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park D W, Noh S K, Kang S G, Huh Y M, Son J H, Suh J S. Study of freshly excised brain tissues using terahertz imaging. Biomedical Optics Express, 2014, 5(8): 2837–2842
CrossRef Pubmed Google scholar
[5]
Tewari P, Kealey C P, Bennett D B, Bajwa N, Barnett K S, Singh R S, Culjat M O, Stojadinovic A, Grundfest W S, Taylor Z D. In vivo terahertz imaging of rat skin burns. Journal of Biomedical Optics, 2012, 17(4): 040503
CrossRef Pubmed Google scholar
[6]
Arbab M H, Dickey T C, Winebrenner D P, Chen A, Klein M B, Mourad P D. Terahertz reflectometry of burn wounds in a rat model. Biomedical Optics Express, 2011, 2(8): 2339–2342
CrossRef Pubmed Google scholar
[7]
Park G S, Kim Y H, Han H, Han J K, Ahn J, Son J H, Park W Y, Jeong Y U. Convergence of terahertz sciences in biomedical systems. Berlin: Springer, 2012, 351
[8]
Wallace V P, Macpherson E, Zeitler J A, Reid C. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(12): 3120–3133
CrossRef Pubmed Google scholar
[9]
World Health Organization. http://www.who.int/bulletin/volumes/87/8/09-030809/zh/
[10]
Dzwierzynski W W. Managing malignant melanoma. Plastic and Reconstructive Surgery, 2013, 132(3): 446e–460e
CrossRef Pubmed Google scholar
[11]
Perera E, Gnaneswaran N, Jennens R, Sinclair R. Malignant Melanoma. Healthcare (Basel, Switzerland), 2013, 2(1): 1–19
CrossRef Pubmed Google scholar
[12]
Grant-Kels J M, Bason E T, Grin C M. The misdiagnosis of malignant melanoma. Journal of the American Academy of Dermatology, 1999, 40(4): 539–548
CrossRef Pubmed Google scholar
[13]
Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863
CrossRef Pubmed Google scholar
[14]
Wallace V P, Fitzgerald A J, Pickwell E, Pye R J, Taday P F, Flanagan N, Ha T. Terahertz pulsed spectroscopy of human Basal cell carcinoma. Applied Spectroscopy, 2006, 60(10): 1127–1133
CrossRef Pubmed Google scholar
[15]
Sim Y C, Ahn K M, Park J Y, Park C S, Son J H. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 779–784
CrossRef Pubmed Google scholar
[16]
Fan S, Ung B S Y, Parrott E P J, Wallace V P, Pickwell-Macpherson E. In vivo terahertz reflection imaging of human scars during and after the healing process. Journal of Biophotonics, 2017, 10(9): 1143–1151
Pubmed
[17]
Rath T. Malignant melanoma. European Surgery, 2006, 38(2): 145–148
CrossRef Google scholar
[18]
Shih F. Mathematical Morphology. London: Wiley-IEEE Press, 2010, 3: 63
[19]
Dufour A, Tankyevych O, Naegel B, Talbot H, Ronse C, Baruthio J, Dokládal P, Passat N. Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Medical Image Analysis, 2013, 17(2): 147–164
CrossRef Pubmed Google scholar
[20]
Merazi-Meksen T, Boudraa M, Boudraa B. Mathematical morphology for TOFD image analysis and automatic crack detection. Ultrasonics, 2014, 54(6): 1642–1648
CrossRef Pubmed Google scholar
[21]
Li Y, Liang X, Zuo M J. A new strategy of using a time-varying structure element for mathematical morphological filtering. Measurement, 2017, 106: 53–65
CrossRef Google scholar
[22]
Sy S, Huang S, Wang Y X, Yu J, Ahuja A T, Zhang Y T, Pickwell-MacPherson E. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Physics in Medicine and Biology, 2010, 55(24): 7587–7596
CrossRef Pubmed Google scholar
[23]
Huang S Y, Wang Y X J, Yeung D K W, Ahuja A T, Zhang Y T, Pickwell-Macpherson E. Tissue characterization using terahertz pulsed imaging in reflection geometry. Physics in Medicine and Biology, 2009, 54(1): 149–160
CrossRef Pubmed Google scholar
[24]
Wortsman X, Wortsman J. Clinical usefulness of variable-frequency ultrasound in localized lesions of the skin. Journal of the American Academy of Dermatology, 2010, 62(2): 247–256
CrossRef Pubmed Google scholar
[25]
Higgins H W 2nd, Lee K C, Galan A, Leffell D J. Melanoma in situ: Part I. Epidemiology, screening, and clinical features. Journal of the American Academy of Dermatology, 2015, 73(2): 181–190, quiz 191–192
CrossRef Pubmed Google scholar
[26]
Kelleher F C, McArthur G A. Targeting NRAS in melanoma. Cancer Journal (Sudbury, Mass.), 2012, 18(2): 132–136
CrossRef Pubmed Google scholar
[27]
Forman S B, Ferringer T C, Peckham S J, Dalton S R, Sasaki G T, Libow L F, Elston D M. Is superficial spreading melanoma still the most common form of malignant melanoma? Journal of the American Academy of Dermatology, 2008, 58(6): 1013–1020
CrossRef Pubmed Google scholar
[28]
Oba J, Nakahara T, Hayashida S, Kido M, Xie L, Takahara M, Uchi H, Miyazaki S, Abe T, Hagihara A, Moroi Y, Furue M. Expression of CD10 predicts tumor progression and unfavorable prognosis in malignant melanoma. Journal of the American Academy of Dermatology, 2011, 65(6): 1152–1160
CrossRef Pubmed Google scholar
[29]
Al Dhaybi R, Agoumi M, Gagné I, McCuaig C, Powell J, Kokta V. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. Journal of the American Academy of Dermatology, 2011, 65(2): 357–363
CrossRef Pubmed Google scholar
[30]
Quatresooz P, Piérard G E. Malignant melanoma: from cell kinetics to micrometastases. Journal of the American Academy of Dermatology, 2011, 12(2): 77–86
CrossRef Pubmed Google scholar
[31]
Wititsuwannakul J, Mason A R, Klump V R, Lazova R. Neuropilin-2 as a useful marker in the differentiation between Spitzoid malignant melanoma and Spitz nevus. Journal of the American Academy of Dermatology, 2013, 68(1): 129–137
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61371055).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2053 KB)

Accesses

Citations

Detail

Sections
Recommended

/