Reflectometric and interferometric fiber optic sensor’s principles and applications
Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI
Reflectometric and interferometric fiber optic sensor’s principles and applications
Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Majority of optical fiber sensors fall under these two broad categories. Both interferometric and reflectometric fiber optic sensors are becoming popular for their ease of use, flexibility, long distance sensing, and potentially noise free detection. Also, these sensors can easily be used in various applications such as structural health monitoring, perimeter intrusion detection, temperature monitoring, and other numerous applications. This paper broadly classifies fiber optic sensors into two subtypes. The paper further highlights different sensors based on their sensing resolution, range, spatial advantages, and applications.
fiber optic / reflectometric / interferometric / optical fiber sensors / sensor applications
[1] |
Bévenot X, Trouillet A, Veillas C, Gagnaire H, Clément M. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators. B, Chemical, 2000, 67(1–2): 57–67
CrossRef
Google scholar
|
[2] |
Kwon I B, Baik S J, Im K, Yu J W. Development of fiber optic BOTDA sensor for intrusion detection. Sensors and Actuators A, Physical, 2002, 101(1-2): 77–84
CrossRef
Google scholar
|
[3] |
Guo H, Xiao G, Mrad N, Yao J. Fiber optic sensors for structural health monitoring of air platforms. Sensors (Basel), 2011, 11(4): 3687–3705
CrossRef
Pubmed
Google scholar
|
[4] |
Gaillorenzi T G. Optical fiber sensor technology. IEEE Journal of Quantum Electronics, 1982, 8: 626–660
|
[5] |
Spooncer R C. Fiber optics in instrumentation. In: Sydenham P H, Thorn R, eds. Handbook of Measurement Science. Chichester: Wiley, 1992
|
[6] |
Udd E. Fiber Optic Sensors. New York: Wiley, 1991
|
[7] |
Marcuse D. Principle of Optical Fiber Measurements. New York: Academic Press, 1981, Chap. 5
|
[8] |
Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied Optics, 1976, 15(9): 2112–2115
CrossRef
Pubmed
Google scholar
|
[9] |
Shi B, Sui H, Liu J, Zhang D. The BOTDR based distribution monitoring system for slope engineering. In: Culshaw M G, Reeves H J, Jefferson I, Spink T W, eds. Engineering Geology for Tomorrow’s cities. London: Geological Society, 2009
|
[10] |
Yasue N, Naruse H, Masuda J, Kino H, Nakamura T,Yamaura R.Concrete pipeline strain measurement using optical fiber sensor. IEICE Transactions on Electronics, 2000, 83(3): 468–474.
|
[11] |
Kurashima T, Horiguchi T, Izumita H, Furukawa S I, Koyamada Y, Brillouin optical-fiber time domain reflectometry. IEICE Transactions on Communications, 1993. E76-B(4), 382–390
|
[12] |
Park J, Lee W, Taylor H F. A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering. Proceedings of the Society for Photo-Instrumentation Engineers, 1998, 3555: 49–56
CrossRef
Google scholar
|
[13] |
Wu H J, Wang Z N, Peng F, Peng Z P, Li X Y, Wu Y, Rao Y J. Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. In: Proceedings of 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014
|
[14] |
Juarez J C, Maier E W, Choi K N, Taylor H F. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087
CrossRef
Google scholar
|
[15] |
Thévenaz L. Review and progress on distributed fiber sensing. In: Optical Fiber Sensors. OSA Technical Digest (Optical Society of America), Cancun Mexico, 2006, ThC1
|
[16] |
Zhu T, He Q, Xiao X, Bao X. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Optics Express, 2013, 21(3): 2953–2963
CrossRef
Pubmed
Google scholar
|
[17] |
Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazão O, González-Herráez M. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Optics Letters, 2013, 38(6): 872–874
CrossRef
Pubmed
Google scholar
|
[18] |
Wu H, Wang Z, Peng F, Peng Z, Li X, Wu Y, Rao Y. Field test of a fully-distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791
CrossRef
Google scholar
|
[19] |
Duan N, Peng F, Rao Y, Du J, Lin Y. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4
CrossRef
Google scholar
|
[20] |
Wang Z N, Zeng J J, Li J, Fan M Q, Wu H, Peng F, Zhang L, Zhou Y, Rao Y J. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 2014, 39(20): 5866–5869
CrossRef
Pubmed
Google scholar
|
[21] |
Juarez J C, Maier E W, Choi K N, Taylor H F. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087
CrossRef
Google scholar
|
[22] |
Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Applied Optics, 2007, 46(11): 1968–1971
CrossRef
Pubmed
Google scholar
|
[23] |
Peng F, Cao X. A hybrid phi/B-OTDR for simultaneous vibration and strain measurement. Photonics Sensors, 2016, 6(2): 121–126
|
[24] |
Bao X, Chen L. Recent progress in optical fiber sensors based on Brillouin scattering at University of Ottawa. Photonic Sensors, 2011, 1(2): 102–117
CrossRef
Google scholar
|
[25] |
Liu X, Wang C, Shang Y, Wang H. Distributed acoustic sensing with Michelson interferometer demodulation. Photonics Sensors, 2017, 7(3): 193–198
|
[26] |
Ma J, Yu Y, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Optics Express, 2015, 23(22): 29268–29278
CrossRef
Pubmed
Google scholar
|
[27] |
Lv F, Han C, Ding H, Wu Z, Li X. Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid. IEEE Photonics Technology Letters, 2015, 27(22): 2327–2330
|
[28] |
Wada K, Narui H, Yamamoto D, Matsuyama T, Horinaka H. Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Optics Express, 2011, 19(22): 21467–21474
CrossRef
Pubmed
Google scholar
|
[29] |
Post E J. Sagnac effect. Reviews of Modern Physics, 1967, 39(2): 475–493
CrossRef
Google scholar
|
[30] |
Arditty H J, Leèfovre H C. Sagnac effect in fiber gyroscopes. Optics Letters, 1981, 6(8): 401–403
CrossRef
Pubmed
Google scholar
|
[31] |
Kersey A D, Dandridge A, Burns W K. Two-wavelength fibre gyroscope with wide dynamic range. Electronics Letters, 1986, 22(18): 935–937
CrossRef
Google scholar
|
[32] |
Kim B Y, Lefevre H C. Harmonic feedback approach to fiber optic gyro scale factor stabilization. In: Proceedings of IEEE Conference on Optical Fiber Sensors, 1983, 136
|
[33] |
Aronowitz F. The Laser Gyro. In: Ross M, ed. Laser Applications. New York: Academic Press,113–200
|
[34] |
Chow W W, Gea-Banacloche J, Pedrotti L M, Sanders V E, Schleich W, Scully M O. The ring laser gyro. Reviews of Modern Physics, 1985, 57(1): 61–104
CrossRef
Google scholar
|
[35] |
Ezekiel S, Arditty H J, eds. Fiber-Optic Rotation Sensors, Springer Series in Optical Sciences, vol. 32. New York: Springer-Verlag, 1982
|
[36] |
Cahill R F, Udd E. Phase-nulling fiber-optic laser gyro. Optics Letters, 1979, 4(3): 93–95
CrossRef
Pubmed
Google scholar
|
[37] |
Koo K P, Sigel G H. A fiber optic magnetic gradiometer. Journal of Lightwave Technology, 1983, 1(3): 509–513
CrossRef
Google scholar
|
[38] |
Tveten A B, Dandridge A, Davis C M, Giallorenzi T G. Fiber optic accelerometer. Electronics Letters, 1980, 16(22): 854
CrossRef
Google scholar
|
[39] |
Ding X Z, Yang H Z, Qiao X G, Zhang P, Tian O, Rong Q Z, Nazal N A M, Lim K S, Ahmad H. Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Applied Optics, 2018, 57(9): 2050–2056
CrossRef
Pubmed
Google scholar
|
[40] |
Miller M C. Gravitational waves: dawn of a new astronomy. Nature, 2016, 531(7592): 40–42
CrossRef
Google scholar
|
[41] |
Riederer S J. Current technical development of magnetic resonance imaging. IEEE Engineering in Medicine and Biology Magazine, 2000, 19(5): 34–41
CrossRef
Pubmed
Google scholar
|
[42] |
Fujimoto J G, Pitris C, Boppart S A, Brezinski M E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1): 9–25
Pubmed
|
[43] |
Maciel M J, Costa C G, Silva M F, Peixoto A C, Wolffenbuttel R F, Correia J H. A wafer-level miniaturized Michelson interferometer on glass substrate for optical coherence tomography applications. Sensors and Actuators A, Physical, 2016, 242: 210–216
CrossRef
Google scholar
|
[44] |
Imai M, Ohashi T, Ohashi Y. Fiber-optic michelson interference using an optical power divider. Optics letters, 1980, 5(10): 418–420
CrossRef
Google scholar
|
[45] |
Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304
CrossRef
Google scholar
|
[46] |
Corke M, Kersey A D, Jackson D A, Jones J D C. All fibre Michelson thermometer. Electronics Letters, 1983, 19(13): 471
CrossRef
Google scholar
|
[47] |
Zhao N, Fu H, Shao M, Yan X, Li H, Liu Q, Gao H, Liu Y, Qiao X. High temperature probe sensor with high sensitivity based on Michelson interferometer. Optics Communications, 2015, 343: 131–134
CrossRef
Google scholar
|
[48] |
Petuchowski S, Giallorenzi T, Sheem S. A sensitive fiber-optic fabry-perot interferometer. IEEE Journal of Quantum Electronics, 1981, 17(11): 2168–2170
CrossRef
Google scholar
|
[49] |
Stone J. Optical-fibre fabry-perot interferometer with finesse of 300. Electronics Letters, 1985, 21(11): 504–505
CrossRef
Google scholar
|
[50] |
Xia W, Li C, Hao H, Wang Y, Ni X, Guo D, Wang M. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology. Applied Optics, 2018, 57(4): 659–665
CrossRef
Pubmed
Google scholar
|
[51] |
Zhang Q, Zhu T, Hou Y, Chiang K. All-fiber vibration sensor based on a Fabry Perot interferometer and a microstructure beam. Journal of the Optical Society of America B, Optical Physics, 2013, 30(5): 1211–1215
CrossRef
Google scholar
|
[52] |
Bucaro J A, Dardy H D, Carome E. Fiber optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304
CrossRef
Google scholar
|
[53] |
Dandridge A, Tveten A B, Sigel G H, West E J, Giallorenzi T G. Optical fiber magnetic field sensor. Electronics Letters, 1980, 16(11): 408
CrossRef
Google scholar
|
[54] |
Koo K P, Sigel G H. An electric field sensor utilizing a piezoelectric PVF2 film in a single-mode fiber interferometer. IEEE Journal of Quantum Electronics, 1982, 18(4): 670–675
CrossRef
Google scholar
|
[55] |
Dandridge A, Tveten A B, Giallorenzi T G. Interferometric current sensor using optical fibres. Electronics Letters, 1981, 17(15): 523–525
CrossRef
Google scholar
|
[56] |
Bucaro J A, Lagakos N, Cole J H,Giallorenzi T G. Fiber optic acoustic transduction. Physical Acoustics, 1982, 16(C): 385–457
CrossRef
Google scholar
|
[57] |
Wade C A, Dandrige A. Fibre-optic coriolis mass flowmeter for liquids. Electronics Letters, 1988, 24(13): 783–785
CrossRef
Google scholar
|
[58] |
Kurashima T, Horiguchi T, Yoshizawa N, Tada H, Tateda M. Measurement of distributed strain due to laying and recovery of submarine optical fiber cable. Applied Optics, 1991, 30(3): 334–337
CrossRef
Pubmed
Google scholar
|
[59] |
Kurashima T, Hogari K, Matsuhashi S, Horiguchi T, Koyamada Y, Wakui Y, Hirano H. Measurement of distributed strain in frozen cables and its potential for use in predicting cable failure. In: Proceedings of International Wire & Cable Symposium Proceedings, 1994, 593602
|
[60] |
Thevenaz L. Monitoring of large structure using distributed Brillouin fiber sensing. In: Proceedings of 13th International Conference on Optical Fiber Sensors, Korea, 1999, 345–348
CrossRef
Google scholar
|
[61] |
Ohno H, Naruse H, Kihara M, Shimada A. Industrial applications of the BOTDR optical fiber strain sensor. Optical Fiber Technology, 2001, 7(1): 45–64
CrossRef
Google scholar
|
[62] |
Wu H, Wang Z, Peng F, Peng Z, Li X, Wu Y, Rao Y. Field test of a fully-distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791
CrossRef
Google scholar
|
[63] |
Duan N, Peng F, Rao Y, Du J, Lin Y. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4
|
[64] |
Peng F, Wu H, Jia X H, Rao Y J, Wang Z N, Peng Z P. Ultra-long high-sensitivity F-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 2014, 22(11): 13804–13810
CrossRef
Pubmed
Google scholar
|
[65] |
Tejedor J, Martins H F, Piote D, Macias-Guarasa J, Pastor-Graells J, Martin-Lopez S, Guillén P C, De Smet F, Postvoll W, González-Herráez M. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. Journal of Lightwave Technology, 2016, 34(19): 4445–4453
CrossRef
Google scholar
|
[66] |
Sun Q, Feng H, Yan X, Zeng Z. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors (Basel), 2015, 15(7): 15179–15197
CrossRef
Pubmed
Google scholar
|
[67] |
Peng F, Duan N, Rao Y, Li J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technology Letters, 2014, 26(20): 2055–2057
CrossRef
Google scholar
|
[68] |
Bradley D J, Bates B, Juulman C O L, Kohno T. Recent developments in the application of the fabry-perot interferometer to space research. Journal de Physique Colloques, 1967, 28 (C2): 280–286
CrossRef
Google scholar
|
[69] |
Mehra R, Shahani H, Khan A. Mach Zehnder Interferometer and its Applications. IJCA Proceedings on National Seminar on Recent Advances in Wireless Networks and Communications, 2014, NWNC (1): 31–36
|
[70] |
Van-Pham D, Nguyen M, Nakanishi H, Norisuye T, Tran-Cong-Miyata Q. Applications of Mach-Zehnder interferometry to studies on local deformation of polymers under photocuring. In: Banishev A, Wang J, Bhowmick, eds. Optical Interferometry. London: IntechOpen, 2017, 25–39
CrossRef
Google scholar
|
[71] |
Markovich R J, Pidgeon C. Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharmaceutical Research, 1991, 8(6): 663–675
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |