Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2019, Vol. 12 Issue (2) : 215-226     https://doi.org/10.1007/s12200-019-0824-6
REVIEW ARTICLE
Reflectometric and interferometric fiber optic sensor’s principles and applications
Muhammad Noaman ZAHID, Jianliang JIANG(), Saad RIZVI
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Download: PDF(605 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Majority of optical fiber sensors fall under these two broad categories. Both interferometric and reflectometric fiber optic sensors are becoming popular for their ease of use, flexibility, long distance sensing, and potentially noise free detection. Also, these sensors can easily be used in various applications such as structural health monitoring, perimeter intrusion detection, temperature monitoring, and other numerous applications. This paper broadly classifies fiber optic sensors into two subtypes. The paper further highlights different sensors based on their sensing resolution, range, spatial advantages, and applications.

Keywords fiber optic      reflectometric      interferometric      optical fiber sensors      sensor applications     
Corresponding Author(s): Jianliang JIANG   
Online First Date: 08 May 2019    Issue Date: 03 July 2019
 Cite this article:   
Muhammad Noaman ZAHID,Jianliang JIANG,Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-019-0824-6
http://journal.hep.com.cn/foe/EN/Y2019/V12/I2/215
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Muhammad Noaman ZAHID
Jianliang JIANG
Saad RIZVI
Fig.1  Block diagram of intrinsic sensors
Fig.2  Block diagram of extrinsic sensors. OTDR: optical time domain reflectometry; BOTDR: Brillouin optical time domain reflectometry; F-OTDR: phase-sensitive optical time-domain reflectometry
Fig.3  Block diagram of interferometric sensors
Fig.4  Configuration of OTDR system
Fig.5  Configuration of BOTDR
Fig.6  Configuration of F-OTDR
Fig.7  Interferometer response
Fig.8  Sagnac interferometer configuration
Fig.9  Mach-Zhender interferometers configuration
Fig.10  Michelson interferometer configuration
Fig.11  Michelson interferometer configuration
Fig.12  OCT instrument using Michelson interferometer configuration
Fig.13  Michelson interferometer configuration using optical power divider. PM: phase modulator
Fig.14  Fabry-Perot configuration
types applications
relectometric techniques OTDR for return loss measurements [57]
BOTDR for testing fiber optic cables
widely used for optical cable maintenance and construction
can be used for sensing chemicals and gases
the strain that arises when laying submarine optical fiber cable can be measured [58]
F-OTDR detection of earthquake damage [59]
the strain in frozen telecommunications cable can determined [59]
for structural monitoring [60]
optical fiber sensor system for river levee collapse detection [61]
well suited for underground deployments [62]
for use of intrusion detection or high-speed train monitoring [63]
abnormal vibration detection along oil/gas pipes [6467]
intrusion alarm and location system [6467].
distributed acoustic test for train tracking [6467]
interferometric techniques Fabry-Perot thermospheric/ionospheric measurements [68]
vibration measurements [45-46]
Sagnac optical rotation sensing [29,30]
acoustic measurements [26]
magnetic measurements [27]
strain and acceleration measurements [28]
Mach-Zhender used to measure magnetic field and acoustic sensing [37]
used in optical processing of signals like switching, add drop multiplexing, modulators [69]
to monitor the extent of deformation in the nanometer scales during the reaction [70]
Michelson for detection of gravitational waves [40]
in astronomical interferometry [40]
in optical coherence tomography [41]
velocity and vibration can be measured [44].
as the core of Fourier transform spectroscopy [71]
Tab.1  Summary of reflectometric and interferometric fiber optic sensors
1 X Bévenot, A Trouillet, C Veillas, H Gagnaire, M Clément. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators. B, Chemical, 2000, 67(1–2): 57–67
https://doi.org/10.1016/S0925-4005(00)00407-X
2 I B Kwon, S J Baik, K Im, J W Yu. Development of fiber optic BOTDA sensor for intrusion detection. Sensors and Actuators A, Physical, 2002, 101(1-2): 77–84
https://doi.org/10.1016/S0924-4247(02)00184-X
3 H Guo, G Xiao, N Mrad, J Yao. Fiber optic sensors for structural health monitoring of air platforms. Sensors (Basel), 2011, 11(4): 3687–3705
https://doi.org/10.3390/s110403687 pmid: 22163816
4 T G Gaillorenzi. Optical fiber sensor technology. IEEE Journal of Quantum Electronics, 1982, 8: 626–660
5 R C Spooncer. Fiber optics in instrumentation. In: Sydenham P H, Thorn R, eds. Handbook of Measurement Science. Chichester: Wiley, 1992
6 E Udd. Fiber Optic Sensors. New York: Wiley, 1991
7 D Marcuse. Principle of Optical Fiber Measurements. New York: Academic Press, 1981, Chap. 5
8 M K Barnoski, S M Jensen. Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied Optics, 1976, 15(9): 2112–2115
https://doi.org/10.1364/AO.15.002112 pmid: 20165347
9 B Shi, H Sui, J Liu, D Zhang. The BOTDR based distribution monitoring system for slope engineering. In: Culshaw M G, Reeves H J, Jefferson I, Spink T W, eds. Engineering Geology for Tomorrow’s cities. London: Geological Society, 2009
10 N Yasue, H Naruse, J Masuda, H Kino, T, Nakamura R. YamauraConcrete pipeline strain measurement using optical fiber sensor. IEICE Transactions on Electronics, 2000, 83(3): 468–474.
11 T Kurashima , T Horiguchi, H Izumita, S I Furukawa, Y Koyamada, Brillouin optical-fiber time domain reflectometry. IEICE Transactions on Communications, 1993. E76-B(4), 382–390
12 J Park, W Lee, H F Taylor. A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering. Proceedings of the Society for Photo-Instrumentation Engineers, 1998, 3555: 49–56
https://doi.org/10.1117/12.318220
13 H J Wu, Z N Wang, F Peng, Z P Peng, X Y Li, Y Wu, Y J Rao. Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. In: Proceedings of 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014
14 J C Juarez, E W Maier, K N Choi, H F Taylor. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087
https://doi.org/10.1109/JLT.2005.849924
15 L Thévenaz. Review and progress on distributed fiber sensing. In: Optical Fiber Sensors. OSA Technical Digest (Optical Society of America), Cancun Mexico, 2006, ThC1
16 T Zhu, Q He, X Xiao, X Bao. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Optics Express, 2013, 21(3): 2953–2963
https://doi.org/10.1364/OE.21.002953 pmid: 23481753
17 H F Martins, S Martin-Lopez, P Corredera, P Salgado, O Frazão, M González-Herráez. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Optics Letters, 2013, 38(6): 872–874
https://doi.org/10.1364/OL.38.000872 pmid: 23503244
18 H Wu, Z Wang, F Peng, Z Peng, X Li, Y Wu, Y Rao. Field test of a fully-distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791
https://doi.org/10.1117/12.2058504
19 N Duan, F Peng, Y Rao, J Du, Y Lin. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4
https://doi.org/10.1117/12.2059188
20 Z N Wang, J J Zeng, J Li, M Q Fan, H Wu, F Peng, L Zhang, Y Zhou, Y J Rao. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 2014, 39(20): 5866–5869
https://doi.org/10.1364/OL.39.005866 pmid: 25361105
21 J C Juarez, E W Maier, K N, Choi H F Taylor. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087
https://doi.org/10.1109/JLT.2005.849924
22 J C Juarez, H F Taylor. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Applied Optics, 2007, 46(11): 1968–1971
https://doi.org/10.1364/AO.46.001968 pmid: 17384709
23 F Peng, X. Cao A hybrid phi/B-OTDR for simultaneous vibration and strain measurement. Photonics Sensors, 2016, 6(2): 121–126
24 X Bao, L Chen. Recent progress in optical fiber sensors based on Brillouin scattering at University of Ottawa. Photonic Sensors, 2011, 1(2): 102–117
https://doi.org/10.1007/s13320-011-0026-3
25 X Liu, C Wang, Y Shang, H. Wang Distributed acoustic sensing with Michelson interferometer demodulation. Photonics Sensors, 2017, 7(3): 193–198
26 J Ma, Y Yu, W Jin. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Optics Express, 2015, 23(22): 29268–29278
https://doi.org/10.1364/OE.23.029268 pmid: 26561196
27 F Lv, C Han, H Ding, Z, Wu X. Li Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid. IEEE Photonics Technology Letters, 2015, 27(22): 2327–2330
28 K Wada, H Narui, D Yamamoto, T Matsuyama, H Horinaka. Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Optics Express, 2011, 19(22): 21467–21474
https://doi.org/10.1364/OE.19.021467 pmid: 22108996
29 E J Post. Sagnac effect. Reviews of Modern Physics, 1967, 39(2): 475–493
https://doi.org/10.1103/RevModPhys.39.475
30 H J Arditty, H C Leèfovre. Sagnac effect in fiber gyroscopes. Optics Letters, 1981, 6(8): 401–403
https://doi.org/10.1364/OL.6.000401 pmid: 19701446
31 A D Kersey, A Dandridge, W K Burns. Two-wavelength fibre gyroscope with wide dynamic range. Electronics Letters, 1986, 22(18): 935–937
https://doi.org/10.1049/el:19860637
32 B Y Kim, H C Lefevre. Harmonic feedback approach to fiber optic gyro scale factor stabilization. In: Proceedings of IEEE Conference on Optical Fiber Sensors, 1983, 136
33 F Aronowitz. The Laser Gyro. In: Ross M, ed. Laser Applications. New York: Academic Press,113–200
34 W W Chow, J Gea-Banacloche, L M Pedrotti, V E Sanders, W Schleich, M O Scully. The ring laser gyro. Reviews of Modern Physics, 1985, 57(1): 61–104
https://doi.org/10.1103/RevModPhys.57.61
35 S Ezekiel, H J Arditty, eds. Fiber-Optic Rotation Sensors, Springer Series in Optical Sciences, vol. 32. New York: Springer-Verlag, 1982
36 R F Cahill, E Udd. Phase-nulling fiber-optic laser gyro. Optics Letters, 1979, 4(3): 93–95
https://doi.org/10.1364/OL.4.000093 pmid: 19687811
37 K P Koo, G H Sigel. A fiber optic magnetic gradiometer. Journal of Lightwave Technology, 1983, 1(3): 509–513
https://doi.org/10.1109/JLT.1983.1072145
38 A B Tveten, A Dandridge, C M Davis, T G Giallorenzi. Fiber optic accelerometer. Electronics Letters, 1980, 16(22): 854
https://doi.org/10.1049/el:19800607
39 X Z Ding, H Z Yang, X G Qiao, P Zhang, O Tian, Q Z Rong, N A M Nazal, K S Lim, H Ahmad. Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Applied Optics, 2018, 57(9): 2050–2056
https://doi.org/10.1364/AO.57.002050 pmid: 29603992
40 M C Miller. Gravitational waves: dawn of a new astronomy. Nature, 2016, 531(7592): 40–42
https://doi.org/10.1038/nature17306
41 S J Riederer. Current technical development of magnetic resonance imaging. IEEE Engineering in Medicine and Biology Magazine, 2000, 19(5): 34–41
https://doi.org/10.1109/51.870229 pmid: 11016028
42 Fujimoto J G, Pitris C, Boppart S A, Brezinski M E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1): 9–25
pmid: 10933065
43 M J Maciel, C G Costa, M F Silva, A C Peixoto, R F Wolffenbuttel, J H Correia. A wafer-level miniaturized Michelson interferometer on glass substrate for optical coherence tomography applications. Sensors and Actuators A, Physical, 2016, 242: 210–216
https://doi.org/10.1016/j.sna.2016.03.007
44 M Imai, T Ohashi, Y Ohashi. Fiber-optic michelson interference using an optical power divider. Optics letters, 1980, 5(10): 418–420
https://doi.org/10.1364/OL.5.000418
45 J A Bucaro, H D Dardy, E F Carome. Fiber-optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304
https://doi.org/10.1121/1.381624
46 M Corke, A D Kersey, D A Jackson, J D C Jones. All fibre Michelson thermometer. Electronics Letters, 1983, 19(13): 471
https://doi.org/10.1049/el:19830320
47 N Zhao, H Fu, M Shao, X Yan, H Li, Q Liu, H Gao, Y Liu, X Qiao. High temperature probe sensor with high sensitivity based on Michelson interferometer. Optics Communications, 2015, 343: 131–134
https://doi.org/10.1016/j.optcom.2014.12.012
48 S Petuchowski, T Giallorenzi, S Sheem. A sensitive fiber-optic fabry-perot interferometer. IEEE Journal of Quantum Electronics, 1981, 17(11): 2168–2170
https://doi.org/10.1109/JQE.1981.1070682
49 J Stone. Optical-fibre fabry-perot interferometer with finesse of 300. Electronics Letters, 1985, 21(11): 504–505
https://doi.org/10.1049/el:19850357
50 W Xia, C Li, H Hao, Y Wang, X Ni, D Guo, M Wang. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology. Applied Optics, 2018, 57(4): 659–665
https://doi.org/10.1364/AO.57.000659 pmid: 29400728
51 Q Zhang, T Zhu, Y Hou, K Chiang. All-fiber vibration sensor based on a Fabry Perot interferometer and a microstructure beam. Journal of the Optical Society of America B, Optical Physics, 2013, 30(5): 1211–1215
https://doi.org/10.1364/JOSAB.30.001211
52 J A Bucaro, H D Dardy, E Carome. Fiber optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304
https://doi.org/10.1121/1.381624
53 A Dandridge, A B Tveten, G H Sigel, E J West, T G Giallorenzi. Optical fiber magnetic field sensor. Electronics Letters, 1980, 16(11): 408
https://doi.org/10.1049/el:19800285
54 K P Koo, G H Sigel. An electric field sensor utilizing a piezoelectric PVF2 film in a single-mode fiber interferometer. IEEE Journal of Quantum Electronics, 1982, 18(4): 670–675
https://doi.org/10.1109/JQE.1982.1071604
55 A Dandridge, A B Tveten, T G Giallorenzi. Interferometric current sensor using optical fibres. Electronics Letters, 1981, 17(15): 523–525
https://doi.org/10.1049/el:19810366
56 J A Bucaro, N Lagakos, J H, Cole T G Giallorenzi. Fiber optic acoustic transduction. Physical Acoustics, 1982, 16(C): 385–457
https://doi.org/10.1016/B978-0-12-477916-7.50012-4
57 C A Wade, A Dandrige. Fibre-optic coriolis mass flowmeter for liquids. Electronics Letters, 1988, 24(13): 783–785
https://doi.org/10.1049/el:19880532
58 T Kurashima, T Horiguchi, N Yoshizawa, H Tada, M Tateda. Measurement of distributed strain due to laying and recovery of submarine optical fiber cable. Applied Optics, 1991, 30(3): 334–337
https://doi.org/10.1364/AO.30.000334 pmid: 20581987
59 T Kurashima, K Hogari, S Matsuhashi, T Horiguchi, Y Koyamada, Y Wakui, H Hirano. Measurement of distributed strain in frozen cables and its potential for use in predicting cable failure. In: Proceedings of International Wire & Cable Symposium Proceedings, 1994, 593602
60 L Thevenaz. Monitoring of large structure using distributed Brillouin fiber sensing. In: Proceedings of 13th International Conference on Optical Fiber Sensors, Korea, 1999, 345–348
https://doi.org/10.1117/12.2302136
61 H Ohno, H Naruse, M Kihara, A Shimada. Industrial applications of the BOTDR optical fiber strain sensor. Optical Fiber Technology, 2001, 7(1): 45–64
https://doi.org/10.1006/ofte.2000.0344
62 H Wu, Z Wang, F Peng, Z Peng, X Li, Y Wu, Y Rao. Field test of a fully-distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791
https://doi.org/10.1117/12.2058504
63 N Duan, F Peng, Y Rao, J Du, Y Lin. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4
64 F Peng, H Wu, X H Jia, Y J Rao, Z N Wang, Z P Peng. Ultra-long high-sensitivity F-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 2014, 22(11): 13804–13810
https://doi.org/10.1364/OE.22.013804 pmid: 24921572
65 J Tejedor, H F Martins, D Piote, J Macias-Guarasa, J Pastor-Graells, S Martin-Lopez, P C Guillén, F De Smet, W Postvoll, M González-Herráez. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. Journal of Lightwave Technology, 2016, 34(19): 4445–4453
https://doi.org/10.1109/JLT.2016.2542981
66 Q Sun, H Feng, X Yan, Z Zeng. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors (Basel), 2015, 15(7): 15179–15197
https://doi.org/10.3390/s150715179 pmid: 26131671
67 F Peng, N Duan, Y Rao, J Li. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technology Letters, 2014, 26(20): 2055–2057
https://doi.org/10.1109/LPT.2014.2346760
68 D J Bradley, B Bates, C O L Juulman, T Kohno. Recent developments in the application of the fabry-perot interferometer to space research. Journal de Physique Colloques, 1967, 28 (C2): 280–286
https://doi.org/10.1051/jphyscol:1967253
69 R Mehra, H Shahani, A Khan. Mach Zehnder Interferometer and its Applications. IJCA Proceedings on National Seminar on Recent Advances in Wireless Networks and Communications, 2014, NWNC (1): 31–36
70 D Van-Pham, M Nguyen, H Nakanishi, T Norisuye, Q Tran-Cong-Miyata. Applications of Mach-Zehnder interferometry to studies on local deformation of polymers under photocuring. In: Banishev A, Wang J, Bhowmick, eds. Optical Interferometry. London: IntechOpen, 2017, 25–39
https://doi.org/10.5772/66955
71 R J Markovich, C Pidgeon. Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharmaceutical Research, 1991, 8(6): 663–675
https://doi.org/10.1023/A:1015829412658 pmid: 2062795
Related articles from Frontiers Journals
[1] Yanjun ZHANG,Jinrui XU,Xinghu FU,Jinjun LIU,Yongsheng TIAN. Hybrid algorithm combining genetic algorithm with back propagation neural network for extracting the characteristics of multi-peak Brillouin scattering spectrum[J]. Front. Optoelectron., 2017, 10(1): 62-69.
[2] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[3] Sigang YANG, Kenneth K. Y. WONG, Minghua CHEN, Shizhong XIE. Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber[J]. Front Optoelec, 2013, 6(1): 25-29.
[4] Bingrong ZOU, Yu YU, Wenhan WU, Shoujin HU, Zheng ZHANG, Xinliang ZHANG. All-optical format conversion from RZ-QPSK to NRZ-QPSK[J]. Front Optoelec, 2012, 5(3): 330-333.
[5] Tianzhi LE, Baojian WU, Feng WEN, Kun QIU. Magnetic tunability of fiber optical parametric oscillators with optical clock extraction[J]. Front Optoelec Chin, 2011, 4(3): 325-329.
[6] Yunpeng FENG, Xiaoyan QIAO, Haobo CHENG, Yongfu WEN, Ya GAO, Huijing ZHANG. Method of optical interference testing error separation[J]. Front Optoelec Chin, 2010, 3(4): 382-386.
[7] Liang ZHAO, Junqiang SUN, Zhefeng HU, Qian HU, Yujie ZHOU, Jing SHAO, Tianye HUANG, Jun LI, . Theoretical demonstration for signal gain in multiple four-wave mixing processes based on cubic susceptibility medium[J]. Front. Optoelectron., 2010, 3(3): 270-282.
[8] Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Front Optoelec Chin, 2009, 2(3): 293-298.
[9] Shigang ZHAO, Xue WANG, Libo YUAN. Four-core fiber-based bending sensor[J]. Front Optoelec Chin, 2008, 1(3-4): 231-236.
[10] GUO Tuan, ZHAO Qida, LIU Lihui, HUANG Guiling, XUE Lifang, LI Guoyu, LIU Bo, ZHANG Weigang, KAI Guiyun, YUAN Shuzhong, DONG Xiaoyi. Light intensity-referred and temperature-insensitive fiber Bragg grating dynamic pressure sensor[J]. Front. Optoelectron., 2008, 1(1-2): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed