Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes
Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG
Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes
Based on the newly proposed temperature dependent dead space model, the breakdown voltage and bandwidth of InP/InGaAs avalanche photodiode (APD) have been investigated in the temperature range from -50°C to 100°C. It was demonstrated that our proposed model is consistent with the experimental results. Our work may provide a guidance to the design of APDs with controllably low temperature coefficient.
optical communication / separate absorption / grading / charge / and multiplication avalanche photodiode (SAGCM APD) / dead space effect / temperature coefficient
[1] |
Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121
CrossRef
Google scholar
|
[2] |
Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282
CrossRef
Pubmed
Google scholar
|
[3] |
Wu G, Jian Y, Wu E, Zeng H. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787
CrossRef
Pubmed
Google scholar
|
[4] |
Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049
CrossRef
Pubmed
Google scholar
|
[5] |
Dixon A R, Dynes J F, Yuan Z L, Sharpe A W, Bennett A J, Shields A J. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3
CrossRef
Google scholar
|
[6] |
Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28
CrossRef
Google scholar
|
[7] |
Zhang J, Itzler M A, Zbinden H,Pan J W.Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13
|
[8] |
Hyun K S, Park C Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984
CrossRef
Google scholar
|
[9] |
Bandyopadhyay A, Jamal Deen M, Tarof L E, Clark W. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699
|
[10] |
Xie J, Ng J S, Tan C H. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706
CrossRef
Google scholar
|
[11] |
Tan L J J, Ong D S G, Ng J S, Tan C H, Jones S K, Qian Y, David J P R. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157
CrossRef
Google scholar
|
[12] |
Xiang J, Zhao Y. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7
CrossRef
Google scholar
|
[13] |
Zhao Y, He S. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480
CrossRef
Google scholar
|
[14] |
El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344
CrossRef
Google scholar
|
[15] |
Das N R, Deen M J. On the frequency response of a resonant-cavity-enhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145
CrossRef
Google scholar
|
[16] |
Okuto Y, Crowell C R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081
CrossRef
Google scholar
|
[17] |
Chau H F, Pavlidis D. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538
CrossRef
Google scholar
|
[18] |
Zhao Y, Zhang D, Qin L, Tang Q, Wu R H, Liu J, Zhang Y, Zhang H, Yuan X, Liu W. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |