Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes

Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG

PDF(236 KB)
PDF(236 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (4) : 400-406. DOI: 10.1007/s12200-018-0851-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes

Author information +
History +

Abstract

Based on the newly proposed temperature dependent dead space model, the breakdown voltage and bandwidth of InP/InGaAs avalanche photodiode (APD) have been investigated in the temperature range from -50°C to 100°C. It was demonstrated that our proposed model is consistent with the experimental results. Our work may provide a guidance to the design of APDs with controllably low temperature coefficient.

Keywords

optical communication / separate absorption / grading / charge / and multiplication avalanche photodiode (SAGCM APD) / dead space effect / temperature coefficient

Cite this article

Download citation ▾
Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes. Front. Optoelectron., 2018, 11(4): 400‒406 https://doi.org/10.1007/s12200-018-0851-8

References

[1]
Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121
CrossRef Google scholar
[2]
Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282
CrossRef Pubmed Google scholar
[3]
Wu G, Jian Y, Wu E, Zeng H. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787
CrossRef Pubmed Google scholar
[4]
Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049
CrossRef Pubmed Google scholar
[5]
Dixon A R, Dynes J F, Yuan Z L, Sharpe A W, Bennett A J, Shields A J. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3
CrossRef Google scholar
[6]
Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28
CrossRef Google scholar
[7]
Zhang J, Itzler M A, Zbinden H,Pan J W.Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13
[8]
Hyun K S, Park C Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984
CrossRef Google scholar
[9]
Bandyopadhyay A, Jamal Deen M, Tarof L E, Clark W. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699
[10]
Xie J, Ng J S, Tan C H. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706
CrossRef Google scholar
[11]
Tan L J J, Ong D S G, Ng J S, Tan C H, Jones S K, Qian Y, David J P R. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157
CrossRef Google scholar
[12]
Xiang J, Zhao Y. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7
CrossRef Google scholar
[13]
Zhao Y, He S. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480
CrossRef Google scholar
[14]
El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344
CrossRef Google scholar
[15]
Das N R, Deen M J. On the frequency response of a resonant-cavity-enhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145
CrossRef Google scholar
[16]
Okuto Y, Crowell C R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081
CrossRef Google scholar
[17]
Chau H F, Pavlidis D. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538
CrossRef Google scholar
[18]
Zhao Y, Zhang D, Qin L, Tang Q, Wu R H, Liu J, Zhang Y, Zhang H, Yuan X, Liu W. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Hi-Tech Research and Development Program of China (No. 2008AA1Z207), Natural Science Foundation of Hubei Province, China (No. 2010CDB01606), Fundamental Research Funds for the Central Universities (HUST: 2016YXMS027), Huawei Innovation Research Program (Nos. YJCB2010032NW, YB2012120133, YB2014010026 and YB2016040002), and Scientific Research Foundation for the Returned Overseas Chinese Scholars.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(236 KB)

Accesses

Citations

Detail

Sections
Recommended

/