High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells

Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU

PDF(264 KB)
PDF(264 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (4) : 360-366. DOI: 10.1007/s12200-018-0847-4
RESEARCH ARTICLE
RESEARCH ARTICLE

High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells

Author information +
History +

Abstract

N-type doping in electron transport materials is an effective way to improve the electron collection and enhance the performance of the perovskite solar cells (PSCs). Here, for the first time, an antibiotic and antimicrobial compound of 1-(o-Tolyl) biguanide (oTb) is used to dope the electron transport material of phenyl-C61-butyric acid methyl ester (PCBM). The oTb doping into the PCBM can increase the conductivity and reduce the work function of the PCBM. The oTb doping can significantly enhance the fill factor (FF) of the perovskite solar cells with the structure of glass/ITO/NiOx/MAPbI3/(oTb)PCBM/(PEIE)/Ag. For the cells without PEIE (polyethylenimine ethoxylated) coating, the oTb doping increases the FF from 0.57 to 0.73. S-shaped of the current density-voltage (J-V) characteristic under illumination is removed after the oTb doping. For the cells with PEIE coating between the (oTb)PCBM and Ag, the oTb doping increases the FF from 0.70 to 0.82. These results show the potential of the oTb as an n-dopant in the applications of perovskite solar cells.

Keywords

perovskite solar cells / n-doping / biguanide / fill factor (FF) / electron transporting layer

Cite this article

Download citation ▾
Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Front. Optoelectron., 2018, 11(4): 360‒366 https://doi.org/10.1007/s12200-018-0847-4

References

[1]
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[2]
Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424
CrossRef Pubmed Google scholar
[3]
Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739–744
CrossRef Pubmed Google scholar
[4]
Rajagopal A, Yao K, Jen A K. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials, 2018, 30(32): e1800455
CrossRef Pubmed Google scholar
[5]
Jiang Y, Luo B, Jiang F, Jiang F, Fuentes-Hernandez C, Liu T, Mao L, Xiong S, Li Z, Wang T, Kippelen B, Zhou Y. Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating. Nano Letters, 2016, 16(12): 7829–7835
CrossRef Pubmed Google scholar
[6]
Qin F, Tong J H, Ge R, Luo B W, Jiang F Y, Liu T F, Jiang Y Y, Xu Z Y, Mao L, Meng W, Xiong S X, Li Z F, Li L Q, Zhou Y H. Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(36): 14017–14024
CrossRef Google scholar
[7]
Bai Y, Meng X, Yang S. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Advanced Energy Materials, 2018, 8(5): 1701883
CrossRef Google scholar
[8]
Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446
CrossRef Pubmed Google scholar
[9]
Gu P Y, Wang N, Wang C Y, Zhou Y C, Long G K, Tian M M, Chen W Q, Sun X W, Kanatzidis M G, Zhang Q C. Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(16): 7339–7344
CrossRef Google scholar
[10]
Li M, Zhao C, Wang Z K, Zhang C C, Lee H K H, Pockett A, Barbé J, Tsoi W C, Yang Y G, Carnie M J, Gao X Y, Yang W X, Durrant J R, Liao L S, Jain S M. Interface modification by ionic liquid: a promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells. Advanced Energy Materials, 2018, 8(24): 1801509
CrossRef Google scholar
[11]
Mali S S, Hong C K. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528–10540
CrossRef Pubmed Google scholar
[12]
Wang Z K, Liao L S. Doped charge-transporting layers in planar perovskite solar cells. Advanced Optical Materials, 2018, 6(17): 1800276
CrossRef Google scholar
[13]
Zhao T, Chueh C C, Chen Q, Rajagopal A, Jen A K Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Letters, 2016, 1(4): 757–763
CrossRef Google scholar
[14]
Liang P W, Chueh C C, Williams S T, Jen A K Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Advanced Energy Materials, 2015, 5(10): 1402321
CrossRef Google scholar
[15]
Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Letters, 2015, 15(4): 2756–2762
CrossRef Pubmed Google scholar
[16]
Tang C G, Ang M C, Choo K K, Keerthi V, Tan J K, Syafiqah M N, Kugler T, Burroughes J H, Png R Q, Chua L L, Ho P K. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature, 2016, 539(7630): 536–540
CrossRef Pubmed Google scholar
[17]
Chang C Y, Huang W K, Chang Y C, Lee K T, Chen C T. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(2): 640–648
CrossRef Google scholar
[18]
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
CrossRef Pubmed Google scholar
[19]
Yuan D X, Yuan X D, Xu Q Y, Xu M F, Shi X B, Wang Z K, Liao L S. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(40): 26653–26658
CrossRef Pubmed Google scholar
[20]
Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng X C, Zhan X, Huang J. π-conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Advanced Materials, 2017, 29(7): 1604545
CrossRef Google scholar
[21]
Hu L, Liu T, Sun L, Xiong S, Qin F, Jiang X, Jiang Y, Zhou Y. Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. Chemical Communications, 2018, 54(37): 4704–4707
CrossRef Pubmed Google scholar
[22]
Jiang Y Y, Li J, Xiong S X, Jiang F Y, Liu T F, Qin F, Hu L, Zhou Y H. Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(33): 17632–17639
CrossRef Google scholar
[23]
Ye Q Q, Wang Z K, Li M, Zhang C C, Hu K H, Liao L S. N-type doping of fullerenes for planar perovskite solar cells. ACS Energy Letters, 2018, 3(4): 875–882
CrossRef Google scholar
[24]
Li M, Wang Z K, Kang T, Yang Y, Gao X, Hsu C S, Li Y, Liao L S. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43: 47–54
CrossRef Google scholar
[25]
Hu L, Liu T, Duan J, Ma X, Ge C, Jiang Y, Qin F, Xiong S, Jiang F, Hu B, Gao X, Yi Y, Zhou Y. An amidine-type n-dopant for solution-processed field-effect transistors and perovskite solar cells. Advanced Functional Materials, 2017, 27(41): 1703254
CrossRef Google scholar
[26]
Bin Z Y, Li J W, Wang L D, Duan L. Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environmental Science, 2016, 9(11): 3424–3428
CrossRef Google scholar
[27]
Wang Z, McMeekin D P, Sakai N, van Reenen S, Wojciechowski K, Patel J B, Johnston M B, Snaith H J. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Advanced Materials, 2017, 29(5): 1604186
CrossRef Google scholar
[28]
Beaula T J, Muthuraja P, Sethuram M, Dhandapani M, Rastogi V K, Jothy V B. Biological and spectral studies of O-tolyl biguanide: experimental and theoretical approach. Journal of Molecular Structure, 2017, 1128: 290–299
CrossRef Google scholar
[29]
Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332
CrossRef Pubmed Google scholar
[30]
Jiang F Y, Liu T F, Luo B W, Tong J H, Qin F, Xiong S X, Li Z F, Zhou Y H. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(4): 1208–1213
CrossRef Google scholar
[31]
Liu T, Jiang F, Qin F, Meng W, Jiang Y, Xiong S, Tong J, Li Z, Liu Y, Zhou Y. Nonreduction-active hole-transporting layers enhancing open-circuit voltage and efficiency of planar perovskite solar cells. ACS Applied Materials & Interfaces, 2016, 8(49): 33899–33906
CrossRef Pubmed Google scholar

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 21474035 and 51773072), the Recruitment Program of Global Youth Experts, the Huazhong University of Science and Technology (HUST) Innovation Research Fund (Nos. 2016JCTD111 and 2017KFKJXX012), the Science and Technology Program of Hubei Province (No. 2017AHB040) and China Postdoctoral Science Foundation funded project (No. 2016M602289).

Author contributions

R. G., F. Q. and Y. H. Z. conceived the idea. R. G. and F. Q. performed the solar cell fabrication, optimization and measurement. R. G., F. Q. and S. X. X. performed the film conductivity measurement. Y. H. Z. directed this work. R. G. wrote the first draft of the manuscript. All the authors revised and approved the manuscript.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/