Proposal for CEP measurement based on terahertz air photonics
Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG
Proposal for CEP measurement based on terahertz air photonics
Single-shot carrier envelope phase (CEP) measurement is a challenge in the research field of ultrafast optics. We theoretically investigate how an intense terahertz pulse modulates second harmonic emission (SH) from a gas plasma induced by a few-cycle laser pulse (FCL). Results show that the modulation quantity of SH intensity has a cosinoidal dependence on the CEP of FCL pulses, based on which we propose a low energy, all-optical method for single-shot CEP measurements via using a known intense terahertz pulse. Moreover, we propose an experimental realization.
ultrafast measurements / far-infrared or terahertz / ultrafast nonlinear optics / harmonic generation and mixing
[1] |
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef
Pubmed
Google scholar
|
[2] |
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef
Pubmed
Google scholar
|
[3] |
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef
Pubmed
Google scholar
|
[4] |
Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
CrossRef
Google scholar
|
[5] |
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef
Pubmed
Google scholar
|
[6] |
Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
CrossRef
Google scholar
|
[7] |
Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706
CrossRef
Google scholar
|
[8] |
Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
CrossRef
Pubmed
Google scholar
|
[9] |
Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Châteauneuf M, Dubois J, Chin S L. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air. Applied Physics Letters, 2010, 96(21): 211113
CrossRef
Google scholar
|
[10] |
Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
CrossRef
Pubmed
Google scholar
|
[11] |
Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
CrossRef
Google scholar
|
[12] |
Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58
CrossRef
Google scholar
|
[13] |
Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105
CrossRef
Google scholar
|
[14] |
Wang H, Wang K, Liu J, Dai H, Yang Z. Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model. Optics Express, 2012, 20(17): 19264–19270
CrossRef
Pubmed
Google scholar
|
[15] |
Liu J, Wang H, Wang K, Yang Z, Wang S. Coherent detection of terahertz pulses via gas plasma induced by few-cycle laser pulses with fixed carrier envelope phase. Optics Letters, 2013, 38(7): 1104–1106
CrossRef
Pubmed
Google scholar
|
[16] |
Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
CrossRef
Google scholar
|
[17] |
Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
CrossRef
Google scholar
|
[18] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U. Single-cycle nonlinear optics. Science, 2008, 320(5883): 1614–1617
CrossRef
Pubmed
Google scholar
|
[19] |
Krausz F, Ivanov M. Attosecond physics. Reviews of Modern Physics, 2009, 81(1): 163–234
CrossRef
Google scholar
|
[20] |
Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K. Nonlinear attosecond metrology by intense isolated attosecond pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 8800112
CrossRef
Google scholar
|
[21] |
Yu T J, Nam C H. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Progress in Quantum Electronics, 2012, 36(4−6): 541–565
CrossRef
Google scholar
|
[22] |
Roos P A, Li X, Smith R P, Pipis J A, Fortier T M, Cundiff S T. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 2005, 30(7): 735–737
CrossRef
Pubmed
Google scholar
|
[23] |
Osvay K, Görbe M, Grebing C, Steinmeyer G. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Optics Letters, 2007, 32(21): 3095–3097
CrossRef
Pubmed
Google scholar
|
[24] |
Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G G, Kienberger R. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Physics, 2009, 5(5): 357–362
CrossRef
Google scholar
|
[25] |
Vernaleken A, Schmidt B, Wolferstetter M, Hänsch T W, Holzwarth R, Hommelhoff P. Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers. Optics Express, 2012, 20(16): 18387–18396
CrossRef
Pubmed
Google scholar
|
[26] |
Piglosiewicz B, Schmidt S, Park D J, Vogelsang J, Groß P, Manzoni C, Farinello P, Cerullo G, Lienau C. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 2014, 8(1): 37–42
CrossRef
Google scholar
|
/
〈 | 〉 |