Proposal for CEP measurement based on terahertz air photonics

Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG

PDF(316 KB)
PDF(316 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (4) : 407-412. DOI: 10.1007/s12200-018-0845-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Proposal for CEP measurement based on terahertz air photonics

Author information +
History +

Abstract

Single-shot carrier envelope phase (CEP) measurement is a challenge in the research field of ultrafast optics. We theoretically investigate how an intense terahertz pulse modulates second harmonic emission (SH) from a gas plasma induced by a few-cycle laser pulse (FCL). Results show that the modulation quantity of SH intensity has a cosinoidal dependence on the CEP of FCL pulses, based on which we propose a low energy, all-optical method for single-shot CEP measurements via using a known intense terahertz pulse. Moreover, we propose an experimental realization.

Keywords

ultrafast measurements / far-infrared or terahertz / ultrafast nonlinear optics / harmonic generation and mixing

Cite this article

Download citation ▾
Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics. Front. Optoelectron., 2018, 11(4): 407‒412 https://doi.org/10.1007/s12200-018-0845-6

References

[1]
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef Pubmed Google scholar
[2]
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef Pubmed Google scholar
[3]
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef Pubmed Google scholar
[4]
Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
CrossRef Google scholar
[5]
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef Pubmed Google scholar
[6]
Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
CrossRef Google scholar
[7]
Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706
CrossRef Google scholar
[8]
Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
CrossRef Pubmed Google scholar
[9]
Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Châteauneuf M, Dubois J, Chin S L. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air. Applied Physics Letters, 2010, 96(21): 211113
CrossRef Google scholar
[10]
Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
CrossRef Pubmed Google scholar
[11]
Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
CrossRef Google scholar
[12]
Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58
CrossRef Google scholar
[13]
Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105
CrossRef Google scholar
[14]
Wang H, Wang K, Liu J, Dai H, Yang Z. Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model. Optics Express, 2012, 20(17): 19264–19270
CrossRef Pubmed Google scholar
[15]
Liu J, Wang H, Wang K, Yang Z, Wang S. Coherent detection of terahertz pulses via gas plasma induced by few-cycle laser pulses with fixed carrier envelope phase. Optics Letters, 2013, 38(7): 1104–1106
CrossRef Pubmed Google scholar
[16]
Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
CrossRef Google scholar
[17]
Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
CrossRef Google scholar
[18]
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U. Single-cycle nonlinear optics. Science, 2008, 320(5883): 1614–1617
CrossRef Pubmed Google scholar
[19]
Krausz F, Ivanov M. Attosecond physics. Reviews of Modern Physics, 2009, 81(1): 163–234
CrossRef Google scholar
[20]
Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K. Nonlinear attosecond metrology by intense isolated attosecond pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 8800112
CrossRef Google scholar
[21]
Yu T J, Nam C H. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Progress in Quantum Electronics, 2012, 36(4−6): 541–565
CrossRef Google scholar
[22]
Roos P A, Li X, Smith R P, Pipis J A, Fortier T M, Cundiff S T. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 2005, 30(7): 735–737
CrossRef Pubmed Google scholar
[23]
Osvay K, Görbe M, Grebing C, Steinmeyer G. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Optics Letters, 2007, 32(21): 3095–3097
CrossRef Pubmed Google scholar
[24]
Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G G, Kienberger R. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Physics, 2009, 5(5): 357–362
CrossRef Google scholar
[25]
Vernaleken A, Schmidt B, Wolferstetter M, Hänsch T W, Holzwarth R, Hommelhoff P. Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers. Optics Express, 2012, 20(16): 18387–18396
CrossRef Pubmed Google scholar
[26]
Piglosiewicz B, Schmidt S, Park D J, Vogelsang J, Groß P, Manzoni C, Farinello P, Cerullo G, Lienau C. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 2014, 8(1): 37–42
CrossRef Google scholar

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 61475054, and 11574105), Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029). KJ Wang thanks Dr. Hu Wang for his previous calculation about this work.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(316 KB)

Accesses

Citations

Detail

Sections
Recommended

/