Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2019, Vol. 12 Issue (2) : 165-173     https://doi.org/10.1007/s12200-018-0837-6
RESEARCH ARTICLE
Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber
Rekha SAHA, Md. Mahbub HOSSAIN(), Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL
Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
Download: PDF(1601 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High birefringence with low confinement loss photonic crystal fiber (PCF) has significant advantages in the field of sensing, dispersion compensation devices, nonlinear applications, and polarization filter. In this report, two different models of PCFs are presented and compared. Both the models contain five air holes rings with combination of circular and elliptical air holes arrangement. Moreover, the elliptical shaped air holes polarization and the third ring air holes rotational angle are varied. To examine different guiding characteristics, finite element method (FEM) with perfectly matched layer (PML) absorbing boundary condition is applied from 1.2 to 1.8 µm wavelength range. High birefringence, low confinement loss, high nonlinearity, and moderate dispersion values are successfully achieved in both the PCFs models. Numeric analysis shows that model-1 gives higher birefringence (2.75 × 102) and negative dispersion (−540.67 ps/(nm·km)) at 1.55 µm wavelength. However, model-2 gives more small confinement loss than model-1 at the same wavelength. In addition, the proposed design demonstrates the variation of rotation angle has great impact to enhance guiding properties especially the birefringence.

Keywords birefringence      dispersion      polarization maintaining      photonic crystal fiber (PCF)      polarization-selective devices      polarization     
Corresponding Author(s): Md. Mahbub HOSSAIN   
Just Accepted Date: 27 September 2018   Online First Date: 18 February 2019    Issue Date: 03 July 2019
 Cite this article:   
Rekha SAHA,Md. Mahbub HOSSAIN,Md. Ekhlasur RAHAMAN, et al. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0837-6
http://journal.hep.com.cn/foe/EN/Y2019/V12/I2/165
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rekha SAHA
Md. Mahbub HOSSAIN
Md. Ekhlasur RAHAMAN
Himadri Shekhar MONDAL
Fig.1  Cross-section of the proposed PCFs. (a) Model-1; (b) model-2
Fig.2  Optical field distribution of the proposed PCFs. (a) x-polarization, (b) y-polarization for model-1; (c) x-polarization, (d) y-polarization for model-2
Fig.3  Refractive index (real part) with respect to wavelength for proposed PCF model-1
Fig.4  Refractive index (real part) with respect to wavelength for proposed PCF model-2
Fig.5  Refractive index (imaginary part) with respect to wavelength for proposed PCF model-1 and model-2
Fig.6  Birefringence with respect to wavelength for proposed PCF model-1
Fig.7  Birefringence with respect to wavelength for proposed PCF model-2
Fig.8  Dispersion with respect to wavelength for proposed PCF model-1, x-polarization
Fig.9  Dispersion with respect to wavelength for proposed PCF model-2, x-polarization
Fig.10  Confinement loss with respect to wavelength for proposed PCF model-1
Fig.11  Confinement loss with respect to wavelength for proposed PCF model-2
Fig.12  Effective area with respect to wavelength for proposed PCF model-1
Fig.13  Effective area with respect to wavelength for proposed PCF model-2
Fig.14  Nonlinear coefficient with respect to wavelength for proposed PCF model-1
Fig.15  Nonlinear coefficient with respect to wavelength for proposed PCF model-2
1 J C Knight, P S J Russell. New ways to guide light. Science, 2002, 296(5566): 276–277
https://doi.org/10.1126/science.1070033 pmid: 11951025
2 J C Knight, T A Birks, P S J Russell, D M Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549
https://doi.org/10.1364/OL.21.001547 pmid: 19881720
3 T A Birks, J C Knight, P S J Russell. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
https://doi.org/10.1364/OL.22.000961 pmid: 18185719
4 J C Knight, J Broeng, T A Birks, P S J Russell. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476–1478
https://doi.org/10.1126/science.282.5393.1476 pmid: 9822375
5 P Russell. Photonic crystal fibers. Science, 2003, 299(5605): 358
6 P Russell, R Dettmer. A neat idea [photonic crystal fibre]. IEE Review, 2001, 47(5): 19–23
https://doi.org/10.1049/ir:20010503
7 R K Sinha, A Kumar, T S Saini. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 287–292
https://doi.org/10.1109/JSTQE.2015.2477781
8 S Mishra, V K Singh. Study of the fundamental propagation properties of a solid core holey photonic crystal fiber in the telecommunication window. Zhongguo Wuli Xuekan, 2010, 48(5): 592
9 R Gangwar, S Mishra, V K Singh. Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM. Optik-International Journal for Light and Electron Optics, 2014, 125(5): 1641–1645
https://doi.org/10.1016/j.ijleo.2013.11.001
10 J Olszewski, P Mergo, K Gasior, W Urba’nczyk. Highly birefringent microstructured polymer fibers optimized for a preform drilling fabrication method. Journal of Optics, 2013, 15(7): 075713
https://doi.org/10.1088/2040-8978/15/7/075713
11 A Ferrando, E Silvestre, P Andres, J Miret, M Andres. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687–697
https://doi.org/10.1364/OE.9.000687 pmid: 19424309
12 W Reeves, J Knight, P Russell, P Roberts. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609–613
https://doi.org/10.1364/OE.10.000609 pmid: 19436406
13 G T Raja, S K Varshney. Large mode area modified clad leakage channel fibers with low bending and higher differential losses. Journal of Optics, 2014, 16(1): 015403
https://doi.org/10.1088/2040-8978/16/1/015403
14 T S Saini, A Kumar, R K Sinha. Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications. Applied Optics, 2014, 53(31): 7246–7251
https://doi.org/10.1364/AO.53.007246 pmid: 25402884
15 T S Saini, A Kumar, R K Sinha. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis. Applied Optics, 2016, 55(9): 2306–2311
https://doi.org/10.1364/AO.55.002306 pmid: 27140567
16 S A Razzak, Y Namihira. Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photonics Technology Letters, 2008, 20(4): 249–251
https://doi.org/10.1109/LPT.2007.912986
17 R K Gangwar, V Bhardwaj, V K Singh. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Optical Engineering (Redondo Beach, Calif.), 2016, 55(2): 026111
https://doi.org/10.1117/1.OE.55.2.026111
18 P Dhara, V K Singh. Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm. Optical Fiber Technology, 2015, 21: 154–159
https://doi.org/10.1016/j.yofte.2014.11.008
19 R K Gangwar, V K Singh. Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics and Nanostructures-Fundamentals and Applications, 2015, 15: 46
20 R Musin, A Zheltikov. Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 2008, 281(4): 567–572
https://doi.org/10.1016/j.optcom.2007.09.035
21 J Simpson, R Stolen, F Sears, W Pleibel, J MacChesney, R Howard. A single-polarization fiber. Journal of Lightwave Technology, 1983, 1(2): 370–374
https://doi.org/10.1109/JLT.1983.1072129
22 M J Messerly, J R Onstott, R C Mikkelson. A broad-band single polarization optical fiber. Journal of Lightwave Technology, 1991, 9(7): 817–820
https://doi.org/10.1109/50.85779
23 K Okamoto. Single-polarization operation in highly birefringent optical fibers. Applied Optics, 1984, 23(15): 2638
https://doi.org/10.1364/AO.23.002638 pmid: 18213048
24 T J Yang, L F Shen, Y F Chau, M J Sung, D Chen, D P Tsai. High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding. Optics Communications, 2008, 281(17): 4334–4338
https://doi.org/10.1016/j.optcom.2008.05.008
25 Y F Chau, H H Yeh, D P Tsai. Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding. Japanese Journal of Applied Physics, 2007, 46(43 11L): L1048–L1051
https://doi.org/10.1143/JJAP.46.L1048
26 D Chen, L Shen. Highly birefringent elliptical-hole photonic crystal fibers with double defect. Journal of Lightwave Technology, 2007, 25(9): 2700–2705
https://doi.org/10.1109/JLT.2007.902114
27 Y S Sun, Y F Chau, H H Yeh, L F Shen, T J Yang, D P Tsai. High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding. Applied Optics, 2007, 46(22): 5276–5281
https://doi.org/10.1364/AO.46.005276 pmid: 17676141
28 M A Islam, M S Alam. Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E+S+C+L+U wavelength bands. IEEE Photonics Technology Letters, 2012, 24(11): 930–932
https://doi.org/10.1109/LPT.2012.2190981
29 Y Yue, G Kai, Z Wang, T Sun, L Jin, Y Lu, C Zhang, J Liu, Y Li, Y Liu, S Yuan, X Dong. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Optics Letters, 2007, 32(5): 469–471
https://doi.org/10.1364/OL.32.000469 pmid: 17392890
30 P R Chaudhuri, V Paulose, C Zhao, C Lu. Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization. IEEE Photonics Technology Letters, 2004, 16(5): 1301–1303
https://doi.org/10.1109/LPT.2004.826219
31 M Samiul Habib, M Selim Habib, M I Hasan, S M A Razzak. Highly nonlinear polarization maintaining two zero dispersion spiral photonic crystal fiber using artificial defects. Optical Fiber Technology, 2013, 19(6): 539–542
https://doi.org/10.1016/j.yofte.2013.08.005
32 M Samiul Habib, M Selim Habib, M I Hasan, S M A Razzak, M A Hossain, Y Namihira. Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding. Optik-International Journal for Light and Electron Optics, 2014, 125(3): 1011–1015
https://doi.org/10.1016/j.ijleo.2013.07.107
33 M I Hasan, R Mahmud, M Morshed, M R Hasan. Ultraflattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. Journal of Modern Optics, 2016, 63(17): 1681–1687
https://doi.org/10.1080/09500340.2016.1167977
34 M Selim Habib, M Samiul Habib, S M A Razzak, M A Hossain. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19(5): 461–467
https://doi.org/10.1016/j.yofte.2013.05.014
35 K Suzuki, H Kubota, S Kawanishi, M Tanaka, M Fujita. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680
https://doi.org/10.1364/OE.9.000676 pmid: 19424307
36 M R Hasan, M A Islam, A A Rifat, M I Hasan. A singlemode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. Journal of Modern Optics, 2017, 64(3): 218–225
https://doi.org/10.1080/09500340.2016.1224941
37 M I Hasan, M Selim Habib, M Samiul Habib, S M A Razzak. Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20(1): 32–38
https://doi.org/10.1016/j.yofte.2013.11.005
38 Y F Chou Chau, C M Lim, V N Yoong, M N Syafi’ie Idris. A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss. Journal of Applied Physics, 2015, 118(24): 243102
https://doi.org/10.1063/1.4938152
39 K Y Yang, Y F Chau, Y W Huang, H Y Yeh, D Ping Tsai. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry airholes in fiber cladding. Journal of Applied Physics, 2011, 109(9): 093103
https://doi.org/10.1063/1.3583560
40 A I Md. Broadband dispersion compensation of single mode fiber by using modified decagonal photonic crystal fiber having high birefringence. Journal of Lasers Optics & Photonics, 2015, 2: 123
41 M M Haque, M S Rahman, M S Habib, S Razzak. Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik-International Journal for Light and Electron Optics, 2014, 125(11): 2608–2611
https://doi.org/10.1016/j.ijleo.2013.11.063
42 R K Gangwar, V K Singh. Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding. Optik-International Journal for Light and Electron Optics, 2016, 127(24): 11854–11859
https://doi.org/10.1016/j.ijleo.2016.09.101
43 M Koshiba. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, 2002, 85(4): 881
44 H Lee, M Schmidt, H Tyagi, L P Sempere, P S J Russell. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters, 2008, 93(11): 111102
https://doi.org/10.1063/1.2982083
45 I Malitson. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965, 55(10): 1205
https://doi.org/10.1364/JOSA.55.001205
46 G P Agrawal. Fiber-Optic Communication Systems. vol. 222. New York: John Wiley & Sons, 2012
47 K Saitoh, M Koshiba. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 927–933
https://doi.org/10.1109/JQE.2002.1017609
48 C Caillaud, C Gilles, L Provino, L Brilland, T Jouan, S Ferre, M Carras, M Brun, D Mechin, J L Adam, J Troles. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3–8.5 µm mid-IR window. Optics Express, 2016, 24(8): 7977–7986
https://doi.org/10.1364/OE.24.007977 pmid: 27137239
49 D Chen, G Wu. Highly birefringent photonic crystal fiber based on a double-hole unit. Applied Optics, 2010, 49(9): 1682–1686
https://doi.org/10.1364/AO.49.001682 pmid: 20300168
50 F Begum, Y Namihira, S A Razzak, S Kaijage, N H Hai, T Kinjo, K Miyagi, N Zou. Novel broadband dispersion compensating photonic crystal fibers: applications in high-speed transmission systems. Optics & Laser Technology, 2009, 41(6): 679–686
https://doi.org/10.1016/j.optlastec.2009.02.001
51 S Haxha, H Ademgil. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area. Optics Communications, 2008, 281(2): 278–286
https://doi.org/10.1016/j.optcom.2007.09.041
52 J Lægsgaard, S B Libori, K Hougaard, J Riishede, T Larsen, T Sørensen, T P Hansen, K P Hansen, M D Nielsen, J Jensen, A Bjarklev. Dispersion properties of photonic crystal fibers-issues and opportunities. MRS Online Proceedings Library Archive, 2003, 797(8): 135–136
53 S Luke, S Sudheer, V M Pillai. Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss. Optik-International Journal for Light and Electron Optics, 2016, 127(23): 11138–11142
https://doi.org/10.1016/j.ijleo.2016.09.024
54 Z Liu, C Wu, M L V Tse, C Lu, H Y Tam. Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Optics Letters, 2013, 38(9): 1385–1387
https://doi.org/10.1364/OL.38.001385 pmid: 23632492
55 P Falkenstein, C D Merritt, B L Justus. Fused preforms for the fabrication of photonic crystal fibers. Optics Letters, 2004, 29(16): 1858–1860
https://doi.org/10.1364/OL.29.001858 pmid: 15357339
Related articles from Frontiers Journals
[1] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[2] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[3] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[4] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[5] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[6] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[7] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[8] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[9] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[10] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[11] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[12] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[13] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[14] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[15] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed