Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates

Ruiqing HU, Yifeng SHI, Haifeng BAO

PDF(381 KB)
PDF(381 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (4) : 385-393. DOI: 10.1007/s12200-018-0822-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates

Author information +
History +

Abstract

A disorderly nanostructured CdSe nano-agglomerates (NAs) with tunable emission are synthesized in aqueous solution. Although the CdSe NAs have diameters of about 20 nm that are larger than the Bohr radius of the crystal bulk, they show size-dependent emission similar to the CdSe nanocrystals. The CdSe NAs represent a collective energy state based on Anderson localization.

Keywords

nano-agglomerates / CdSe / photoluminescence

Cite this article

Download citation ▾
Ruiqing HU, Yifeng SHI, Haifeng BAO. Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates. Front. Optoelectron., 2018, 11(4): 385‒393 https://doi.org/10.1007/s12200-018-0822-0

References

[1]
Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 1996, 100(31): 13226–13239
CrossRef Google scholar
[2]
Nirmal M, Brus L E. Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 1999, 32(5): 407–414
CrossRef Google scholar
[3]
Maillard M, Motte L, Ngo A T, Pileni M P. Rings and hexagons made of nanocrystals: a marangoni effect. Journal of Physical Chemistry B, 2000, 104(50): 11871–11877
CrossRef Google scholar
[4]
Yang Y, Chen O, Angerhofer A, Cao Y C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 2006, 128(38): 12428–12429
CrossRef Pubmed Google scholar
[5]
Kovalev D, Heckler H, Polisski G, Koch F. Optical properties of Si nanocrystals. Physica Status Solidi, 1999, 215(2): 871–932
CrossRef Google scholar
[6]
Qu L, Yu W W, Peng X.In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Letters, 2004, 4(3): 465–469
CrossRef Google scholar
[7]
Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018
CrossRef Pubmed Google scholar
[8]
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
CrossRef Google scholar
[9]
Murray C B, Kagan C, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Research, 2000, 30(1): 545–610
[10]
Sadasivuni K K, Kafy A, Zhai L, Ko H U, Mun S, Kim J. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small, 2015, 11(8): 994–1002
CrossRef Pubmed Google scholar
[11]
Christopher Doty R, Yu H, Shih C, Korgel B. Temperature-dependent electron transport through silver nanocrystal superlattices. Journal of Physical Chemistry B, 2015, 105(35): 8291–8296
[12]
Stephen C, Stephen F, Brian K, Donald F. Time-resolved small-angle X-ray scattering studies of nanocrystal superlattice self-assembly. Journal of the American Chemical Society, 2015, 120(12): 2969–2970
[13]
Jia T, Kolpin A, Ma C, Chan R C, Kwok W M, Tsang S C. A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chemical Communications, 2014, 50(10): 1185–1188
CrossRef Pubmed Google scholar
[14]
Artemyev M V, Bibik A I, Gurinovich L I, Gaponenko S V, Jaschinski H, Woggon U. Optical properties of dense and diluted ensembles of semiconductor quantum dots. Physica Status Solidi, 2001, 224(2): 393–396
CrossRef Google scholar
[15]
Artemyev M V, Woggon U, Jaschinski H, Gurinovich L I, Gaponenko S V. Spectroscopic study of electronic states in an ensemble of closeccacked CdSe nanocrystals. Journal of Physical Chemistry B, 2000, 104(49): 11617–11621
CrossRef Google scholar
[16]
Ge J P, Li Y D, Yang G Q. Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe. Chemical Communications, 2002, 17(17): 1826–1827
CrossRef Pubmed Google scholar
[17]
Ma X D, Qian X F, Yin J, Xi H A, Zhu Z K. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. Journal of Colloid and Interface Science, 2002, 252(1): 77–81
CrossRef Pubmed Google scholar
[18]
Zhu J, Xu S, Wang H, Zhu J, Chen H.Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Advanced Materials, 2003, 15 (2):156–159
[19]
Mott N F, Davis E A. Electronic Processes. In: Non-Crystalline Materials. 2nd Edition, Oxford: Clarendon Press, 1979
[20]
Anderson P W. Absence of diffusion in certain random lattices. Physical Review, 1958, 109(5): 1492–1505
CrossRef Google scholar
[21]
Zhong L W, Steven A H, Igor V, Robert L W, James B, Neal D E, Kathy B A. Superlattices of self-assembled tetrahedral Ag nanocrystals. Advanced Materials, 2010, 10(10): 808–812
[22]
Ma Q, Xiong R, Huang Y M. Tunable photoluminescence of porous silicon by liquid crystal infiltration. Journal of Luminescence, 2011, 131(10): 2053–2057
CrossRef Google scholar
[23]
Swart I, Liljeroth P, Vanmaekelbergh D. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews, 2016, 116(18): 11181–11219
CrossRef Pubmed Google scholar

Acknowledgments

We thank the National Natural Science Foundation of China for financial support of this research (Grant No. 21673167).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(381 KB)

Accesses

Citations

Detail

Sections
Recommended

/