Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity

Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN

PDF(2374 KB)
PDF(2374 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (3) : 245-255. DOI: 10.1007/s12200-018-0820-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity

Author information +
History +

Abstract

Longitudinal twinning α-In2Se3 nanowires with the (101¯8) twin plane were synthesized to fabricate high performance single nanowire based photodetectors. As-synthesized α-In2Se3 nanowire exhibited typical n-type semiconducting behavior with an electron mobility of 23.1 cm2·V1·S1 and a broadband spectral response from 300 to 1100 nm, covering the ultraviolet-visible-near-infrared (UV-visible-NIR) region. Besides, the fabricated device showed a high responsivity of 8.57 × 105 A·W1, high external quantum efficiency up to 8.8 × 107% and a high detectivity of 1.58 × 1012 Jones under 600 nm light illumination at a basis of 3 V, which are much higher than previously reported In2Se3 nanostructures due to the interface defect effect of the twin plane. The results indicated that the longitudinal twinning α-In2Se3 nanowires have immense potential for further applications in highly performance broadband photodetectors and other optoelectronic devices.

Keywords

photodetectors / nanowires / twinning / ultraviolet-visible-near-infrared (UV-visible-NIR)

Cite this article

Download citation ▾
Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity. Front. Optoelectron., 2018, 11(3): 245‒255 https://doi.org/10.1007/s12200-018-0820-2

References

[1]
Fan Z, Ho J C, Jacobson Z A, Razavi H, Javey A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11066–11070
CrossRef Pubmed Google scholar
[2]
Li L, Gu L, Lou Z, Fan Z, Shen G. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4): 4067–4076
CrossRef Pubmed Google scholar
[3]
Kind H, Yan H, Messer B, Law M, Yang P. NW ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
CrossRef Google scholar
[4]
Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks T J, Janes D B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384
CrossRef Pubmed Google scholar
[5]
Yoo J, Jeong S, Kim S, Je J H. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Advanced Materials, 2015, 27(10): 1712–1717
CrossRef Pubmed Google scholar
[6]
Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, Huang H, Xu J, Han H, Chen D, Shen G. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano, 2011, 5(10): 8412–8419
CrossRef Pubmed Google scholar
[7]
Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8(7): 2162–2169
CrossRef Google scholar
[8]
Park C M, Sohn H J. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Advanced Materials, 2010, 22(1): 47–52
CrossRef Pubmed Google scholar
[9]
Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Letters, 2012, 12(6): 3005–3011
CrossRef Pubmed Google scholar
[10]
Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 2003, 125(52): 16176–16177
CrossRef Pubmed Google scholar
[11]
Liu X, Liu X, Wang J, Liao C, Xiao X, Guo S, Jiang C, Fan Z, Wang T, Chen X, Lu W, Hu W, Liao L. Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2-nanowire composite and their application in photodetectors. Advanced Materials, 2014, 26(43): 7399–7404
CrossRef Pubmed Google scholar
[12]
Feng G, Yang C, Zhou S. Nanocrystalline Cr2+-doped ZnSe nanowires laser. Nano Letters, 2013, 13(1): 272–275
CrossRef Pubmed Google scholar
[13]
Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7(11): 5046–5052
CrossRef Pubmed Google scholar
[14]
Wang Z, Safdar M, Jiang C, He J. High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Letters, 2012, 12(9): 4715–4721
CrossRef Pubmed Google scholar
[15]
Zhai T, Fang X, Liao M, Xu X, Li L, Liu B, Koide Y, Ma Y, Yao J, Bando Y, Golberg D. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano, 2010, 4(3): 1596–1602
CrossRef Pubmed Google scholar
[16]
Peng H, Zhang X F, Twesten R D, Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2(4): 327–335
CrossRef Google scholar
[17]
Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, Zhang W J, Kwong H L, Meng X M, Lee S T, Lee C S. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application. ACS Nano, 2010, 4(10): 6064–6070
CrossRef Pubmed Google scholar
[18]
Julien C, Hatzikraniotis E, Chevy A, Kambas K. Electrical behavior of lithium intercalated layered In-Se compounds. Materials Research Bulletin, 1985, 20(3): 287–292
CrossRef Google scholar
[19]
Li Q, Li Y, Gao J, Wang S, Sun X. High performance single In2Se3 nanowire photodetector. Applied Physics Letters, 2011, 99(24): 243105–243109
CrossRef Google scholar
[20]
Ali Z, Mirza M, Cao C, Butt F K, Tanveer M, Tahir M, Aslam I, Idrees F, Safdar M. Wide range photodetector based on catalyst free grown indium selenide microwires. ACS Applied Materials & Interfaces, 2014, 6(12): 9550–9556
CrossRef Pubmed Google scholar
[21]
Kang D, Rim T, Baek C K, Meyyappan M, Lee J S. Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors. Small, 2014, 10(18): 3795–3802
CrossRef Pubmed Google scholar
[22]
Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. Journal of the American Chemical Society, 2007, 129(1): 34–35
CrossRef Pubmed Google scholar
[23]
Jasinski J, Swider W, Washburn J, Liliental-Weber Z, Chaiken A, Nauka K, Gibson G A, Yang C C. Crystal structure of k-In2Se3. Applied Physics Letters, 2002, 81(23): 4356–4358
CrossRef Google scholar
[24]
Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Solar Energy Materials and Solar Cells, 1994, 32(1): 7–19
CrossRef Google scholar
[25]
Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A, Shen Z X. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Letters, 2009, 9(3): 1265–1269
CrossRef Pubmed Google scholar
[26]
Yu B, Ju S, Sun X H, Ng G, Nguyen T D, Meyyappan M, Janes D B. Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91(13): 133119–133121
CrossRef Google scholar
[27]
Algra R E, Verheijen M A, Borgström M T, Feiner L F, Immink G, van Enckevort W J, Vlieg E, Bakkers E P. Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456(7220): 369–372
CrossRef Pubmed Google scholar
[28]
Grap T, Rieger T, Blömers Ch, Schäpers T, Grützmacher D, Lepsa M I. Self-catalyzed VLS grown InAs nanowires with twinning superlattices. Nanotechnology, 2013, 24(33): 335601
CrossRef Pubmed Google scholar
[29]
Algra R E, Verheijen M A, Feiner L F, Immink G G W, Enckevort W J, Vlieg E, Bakkers E P A M. The role of surface energies and chemical potential during nanowire growth. Nano Letters, 2011, 11(3): 1259–1264
CrossRef Pubmed Google scholar
[30]
Burgess T, Breuer S, Caroff P, Wong-Leung J, Gao Q, Hoe Tan H, Jagadish C. Twinning superlattice formation in GaAs nanowires. ACS Nano, 2013, 7(9): 8105–8114
CrossRef Pubmed Google scholar
[31]
Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures. Journal of Crystal Growth, 2008, 310(20): 4481–4486
CrossRef Google scholar
[32]
Hao Y, Meng G, Wang Z L, Ye C, Zhang L. Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth. Nano Letters, 2006, 6(8): 1650–1655
CrossRef Pubmed Google scholar
[33]
Wang J, Sun X W, Xie S, Zhou W, Yang Y. Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Crystal Growth & Design, 2008, 8(2): 707–710
CrossRef Google scholar
[34]
Kim H S, Myung Y, Cho Y J, Jang D M, Jung C S, Park J, Ahn J P. Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography. Nano Letters, 2010, 10(5): 1682–1691
CrossRef Pubmed Google scholar
[35]
Xu J, Lu A J, Wang C, Zou R, Liu X, Wu X, Wang Y, Li S, Sun L, Chen X, Oh H, Baek H, Yi G, Chu L. ZnSe-based longitudinal twinning nanowires. Advanced Engineering Materials, 2014, 16(4): 459–465
CrossRef Google scholar
[36]
Xu J, Wang C, Zhang Y, Liu X, Liu X, Huang S, Chen X. Structural, vibrational and luminescence properties of longitudinal twinning Zn2GeO4 nanowires. CrystEngComm, 2013, 15(4): 764–768
CrossRef Google scholar
[37]
Ikonić Z, Srivastava G P, Inkson J C. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. Physical Review B: Condensed Matter, 1993, 48(23): 17181–17193
CrossRef Pubmed Google scholar
[38]
Tsuzuki H, Cesar D F, Dias M R, Castelano L K, Lopez-Richard V, Rino J P, Marques G E. Tailoring electronic transparency of twin-plane 1D superlattices. ACS Nano, 2011, 5(7): 5519–5525
CrossRef Pubmed Google scholar
[39]
Akiyama T, Yamashita T, Nakamura K, Ito T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano Letters, 2010, 10(11): 4614–4618
CrossRef Pubmed Google scholar
[40]
Shimamura K, Yuan Z, Shimojo F, Nakano A. Effects of twins on the electronic properties of GaAs. Applied Physics Letters, 2013, 103(2): 022105–022109
CrossRef Google scholar
[41]
Johansson J, Karlsson L S, Svensson C P T, Mårtensson T, Wacaser B A, Deppert K, Samuelson L, Seifert W. Structural properties of<111>B-oriented III-V nanowires. Nature Materials, 2006, 5(7): 574–580
CrossRef Pubmed Google scholar
[42]
Shen G, Xu J, Wang X, Huang H, Chen D. Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Advanced Materials, 2011, 23(6): 771–775
CrossRef Pubmed Google scholar
[43]
Shao D, Gao J, Chow P, Sun H, Xin G, Sharma P, Lian J, Koratkar N A, Sawyer S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Letters, 2015, 15(6): 3787–3792
CrossRef Pubmed Google scholar
[44]
Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19–38
CrossRef Google scholar
[45]
Zhai T, Ma Y, Li L, Fang X, Liao M, Koide Y, Yao J, Bando Y, Golberg D. Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20(32): 6630–6637
CrossRef Google scholar
[46]
Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L 2nd, Yu B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1): 514–521
CrossRef Pubmed Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61625404, 61574132), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-JWC004).

Author contributions

Z. D. Zhang and J. H. Yang performed the experiments; all authors contributed to the general discussion and have given approval to the final version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

TEM, XPS data of In2Se3-based twinning nanowires and the photoresponse data of the In2Se3-based photodetectors are shown in Figs. S1−S5.

Figs. S1 (a) Full scale XPS scan, (b) in peaks, and (c) Se 3d doublets of the synthesized α-In2Se3 nanowires

Figs. S2 (a) TEM image, and (b) SAED pattern of the synthesized twinned α-In2Se3 nanowires

Figs. S3 Key device figures-of-merit, EQE and specific detectivity of the devices measured at different power intensities of 600 nm light illumination at a 3 V bias

Figs. S4I-V curves of the device illuminated with incident light of various wavelengths and in the dark, respectively

Figs. S5 (a) Time-resolved photoresponse characteristics of the device at a bias of 1 V in 300 nm with different light intensities. (b) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.97. (c) Time-resolved photoresponse characteristics of the device at a bias of 3 V in 800 nm with different light intensities. (d) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.94

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2374 KB)

Accesses

Citations

Detail

Sections
Recommended

/