Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (3) : 245-255     https://doi.org/10.1007/s12200-018-0820-2
RESEARCH ARTICLE |
Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity
Zidong ZHANG1,2, Juehan YANG1, Fuhong MEI2, Guozhen SHEN1,3()
1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2. Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
3. College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100029, China
Download: PDF(2374 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Longitudinal twinning α-In2Se3 nanowires with the (101¯8) twin plane were synthesized to fabricate high performance single nanowire based photodetectors. As-synthesized α-In2Se3 nanowire exhibited typical n-type semiconducting behavior with an electron mobility of 23.1 cm2·V1·S1 and a broadband spectral response from 300 to 1100 nm, covering the ultraviolet-visible-near-infrared (UV-visible-NIR) region. Besides, the fabricated device showed a high responsivity of 8.57 × 105 A·W1, high external quantum efficiency up to 8.8 × 107% and a high detectivity of 1.58 × 1012 Jones under 600 nm light illumination at a basis of 3 V, which are much higher than previously reported In2Se3 nanostructures due to the interface defect effect of the twin plane. The results indicated that the longitudinal twinning α-In2Se3 nanowires have immense potential for further applications in highly performance broadband photodetectors and other optoelectronic devices.

Keywords photodetectors      nanowires      twinning      ultraviolet-visible-near-infrared (UV-visible-NIR)     
Corresponding Authors: Guozhen SHEN   
Just Accepted Date: 18 May 2018   Online First Date: 27 June 2018    Issue Date: 31 August 2018
 Cite this article:   
Zidong ZHANG,Juehan YANG,Fuhong MEI, et al. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0820-2
http://journal.hep.com.cn/foe/EN/Y2018/V11/I3/245
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zidong ZHANG
Juehan YANG
Fuhong MEI
Guozhen SHEN
Fig.1  (a) and (b) SEM images; (c) XRD pattern; (d) elemental mapping; (e) EDS spectrum; (f) TEM image; (g) and (h) HRTEM images; and (i) SAED pattern of the as-synthesized In2Se3 nanowires (NWs)
Fig.2  (a) Output curves of single In2Se3-basedtwinning nanowire FET; (b) transfer curve of single In2Se3-based twinning nanowire FET at a bias of 5 V
Fig.3  (a) Schematic illustration of the single nanowire photodetector. (b) I-V curves of the device in the dark and under illumination with light of different wavelengths. (c) I-V curves of the device under 600 nm light illumination with different power intensities. (d) Photocurrent and responsivity as a function of light power intensity. The fitting result is Iph ~P0.99. (e) Time-resolved photoresponse of the device recorded for a power density of 8.19 mW·cm−2. (f) Response and recovery times of the device
Fig.4  (a) Photoresponse characteristics and (b) responsivity (left) and EQE (right) of the device to light illuminations with different wavelengths ranging from UV to NIR regions at a bias of 1 V
Fig.5  Time-resolved photoresponse performance of the In2Se3 nanowires device illuminated under (a) 300 nm, (b) 400 nm, (c) 500 nm, (d) 700 nm, (e) 800 nm, and (f) 900 nm by switching the light on and off at a bias of 1 V, respectively. (g) Photoresponse times under various excitation wavelengths
photodetectors measurement condition Iph/A spectral range/nm responsivity/(A·W1) detectivity(D*)/Jones source
a-In2Se3 NWs 500 nm, 3 V 200 p 89 [15]
g-In2Se3 microwires 633 nm, 4 V 8 n 365−1050 0.54 3.94 × 1010 [20]
S-doped In2Se3 NWs 500 nm, 3 V 130 n 1331 [45]
In2Se3 nanosheets 500 nm, 5 V 20 p 300−1100 59 3.37 × 1011 [46]
a-In2Se3 twinning NWs 600 nm,3 V 165 n 300−1100 4.18 × 105 1.58 × 1012 this work
Tab.1  Comparison of the key device performance figures-of-merit for the reported In2Se3-nanostructures based photodetectors
  Figs. S1 (a) Full scale XPS scan, (b) in peaks, and (c) Se 3d doublets of the synthesized α-In2Se3 nanowires
  Figs. S2 (a) TEM image, and (b) SAED pattern of the synthesized twinned α-In2Se3 nanowires
  Figs. S3 Key device figures-of-merit, EQE and specific detectivity of the devices measured at different power intensities of 600 nm light illumination at a 3 V bias
  Figs. S4I-V curves of the device illuminated with incident light of various wavelengths and in the dark, respectively
  Figs. S5 (a) Time-resolved photoresponse characteristics of the device at a bias of 1 V in 300 nm with different light intensities. (b) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.97. (c) Time-resolved photoresponse characteristics of the device at a bias of 3 V in 800 nm with different light intensities. (d) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.94
1 Fan Z, Ho J C, Jacobson Z A, Razavi H, Javey A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11066–11070
https://doi.org/10.1073/pnas.0801994105 pmid: 18685094
2 Li L, Gu L, Lou Z, Fan Z, Shen G. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4): 4067–4076
https://doi.org/10.1021/acsnano.7b00749 pmid: 28323410
3 Kind H, Yan H, Messer B, Law M, Yang P. NW ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
4 Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks T J, Janes D B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384
https://doi.org/10.1038/nnano.2007.151 pmid: 18654311
5 Yoo J, Jeong S, Kim S, Je J H. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Advanced Materials, 2015, 27(10): 1712–1717
https://doi.org/10.1002/adma.201404945 pmid: 25613836
6 Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, Huang H, Xu J, Han H, Chen D, Shen G. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano, 2011, 5(10): 8412–8419
https://doi.org/10.1021/nn203315k pmid: 21942659
7 Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8(7): 2162–2169
https://doi.org/10.1007/s12274-015-0723-0
8 Park C M, Sohn H J. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Advanced Materials, 2010, 22(1): 47–52
https://doi.org/10.1002/adma.200901427 pmid: 20217695
9 Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Letters, 2012, 12(6): 3005–3011
https://doi.org/10.1021/nl300794f pmid: 22607457
10 Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 2003, 125(52): 16176–16177
https://doi.org/10.1021/ja037743f pmid: 14692744
11 Liu X, Liu X, Wang J, Liao C, Xiao X, Guo S, Jiang C, Fan Z, Wang T, Chen X, Lu W, Hu W, Liao L. Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2-nanowire composite and their application in photodetectors. Advanced Materials, 2014, 26(43): 7399–7404
https://doi.org/10.1002/adma.201401732 pmid: 25236580
12 Feng G, Yang C, Zhou S. Nanocrystalline Cr2+-doped ZnSe nanowires laser. Nano Letters, 2013, 13(1): 272–275
https://doi.org/10.1021/nl304066h pmid: 23256521
13 Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7(11): 5046–5052
https://doi.org/10.1039/C5NR00410A pmid: 25698073
14 Wang Z, Safdar M, Jiang C, He J. High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Letters, 2012, 12(9): 4715–4721
https://doi.org/10.1021/nl302142g pmid: 22908854
15 Zhai T, Fang X, Liao M, Xu X, Li L, Liu B, Koide Y, Ma Y, Yao J, Bando Y, Golberg D. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano, 2010, 4(3): 1596–1602
https://doi.org/10.1021/nn9012466 pmid: 20146437
16 Peng H, Zhang X F, Twesten R D, Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2(4): 327–335
https://doi.org/10.1007/s12274-009-9030-y
17 Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, Zhang W J, Kwong H L, Meng X M, Lee S T, Lee C S. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application. ACS Nano, 2010, 4(10): 6064–6070
https://doi.org/10.1021/nn101467p pmid: 20925392
18 Julien C, Hatzikraniotis E, Chevy A, Kambas K. Electrical behavior of lithium intercalated layered In-Se compounds. Materials Research Bulletin, 1985, 20(3): 287–292
https://doi.org/10.1016/0025-5408(85)90185-0
19 Li Q, Li Y, Gao J, Wang S, Sun X. High performance single In2Se3 nanowire photodetector. Applied Physics Letters, 2011, 99(24): 243105–243109
https://doi.org/10.1063/1.3669513
20 Ali Z, Mirza M, Cao C, Butt F K, Tanveer M, Tahir M, Aslam I, Idrees F, Safdar M. Wide range photodetector based on catalyst free grown indium selenide microwires. ACS Applied Materials & Interfaces, 2014, 6(12): 9550–9556
https://doi.org/10.1021/am501933p pmid: 24836455
21 Kang D, Rim T, Baek C K, Meyyappan M, Lee J S. Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors. Small, 2014, 10(18): 3795–3802
https://doi.org/10.1002/smll.201400373 pmid: 24828147
22 Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. Journal of the American Chemical Society, 2007, 129(1): 34–35
https://doi.org/10.1021/ja067436k pmid: 17199275
23 Jasinski J, Swider W, Washburn J, Liliental-Weber Z, Chaiken A, Nauka K, Gibson G A, Yang C C. Crystal structure of k-In2Se3. Applied Physics Letters, 2002, 81(23): 4356–4358
https://doi.org/10.1063/1.1526925
24 Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Solar Energy Materials and Solar Cells, 1994, 32(1): 7–19
https://doi.org/10.1016/0927-0248(94)90251-8
25 Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A, Shen Z X. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Letters, 2009, 9(3): 1265–1269
https://doi.org/10.1021/nl900222j pmid: 19215080
26 Yu B, Ju S, Sun X H, Ng G, Nguyen T D, Meyyappan M, Janes D B. Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91(13): 133119–133121
https://doi.org/10.1063/1.2793505
27 Algra R E, Verheijen M A, Borgström M T, Feiner L F, Immink G, van Enckevort W J, Vlieg E, Bakkers E P. Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456(7220): 369–372
https://doi.org/10.1038/nature07570 pmid: 19020617
28 Grap T, Rieger T, Blömers Ch, Schäpers T, Grützmacher D, Lepsa M I. Self-catalyzed VLS grown InAs nanowires with twinning superlattices. Nanotechnology, 2013, 24(33): 335601
https://doi.org/10.1088/0957-4484/24/33/335601 pmid: 23881182
29 Algra R E, Verheijen M A, Feiner L F, Immink G G W, Enckevort W J, Vlieg E, Bakkers E P A M. The role of surface energies and chemical potential during nanowire growth. Nano Letters, 2011, 11(3): 1259–1264
https://doi.org/10.1021/nl104267p pmid: 21332147
30 Burgess T, Breuer S, Caroff P, Wong-Leung J, Gao Q, Hoe Tan H, Jagadish C. Twinning superlattice formation in GaAs nanowires. ACS Nano, 2013, 7(9): 8105–8114
https://doi.org/10.1021/nn403390t pmid: 23987994
31 Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures. Journal of Crystal Growth, 2008, 310(20): 4481–4486
https://doi.org/10.1016/j.jcrysgro.2008.07.111
32 Hao Y, Meng G, Wang Z L, Ye C, Zhang L. Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth. Nano Letters, 2006, 6(8): 1650–1655
https://doi.org/10.1021/nl060695n pmid: 16895351
33 Wang J, Sun X W, Xie S, Zhou W, Yang Y. Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Crystal Growth & Design, 2008, 8(2): 707–710
https://doi.org/10.1021/cg060779+
34 Kim H S, Myung Y, Cho Y J, Jang D M, Jung C S, Park J, Ahn J P. Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography. Nano Letters, 2010, 10(5): 1682–1691
https://doi.org/10.1021/nl1000168 pmid: 20387795
35 Xu J, Lu A J, Wang C, Zou R, Liu X, Wu X, Wang Y, Li S, Sun L, Chen X, Oh H, Baek H, Yi G, Chu L. ZnSe-based longitudinal twinning nanowires. Advanced Engineering Materials, 2014, 16(4): 459–465
https://doi.org/10.1002/adem.201300405
36 Xu J, Wang C, Zhang Y, Liu X, Liu X, Huang S, Chen X. Structural, vibrational and luminescence properties of longitudinal twinning Zn2GeO4 nanowires. CrystEngComm, 2013, 15(4): 764–768
https://doi.org/10.1039/C2CE26627J
37 Ikonić Z, Srivastava G P, Inkson J C. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. Physical Review B: Condensed Matter, 1993, 48(23): 17181–17193
https://doi.org/10.1103/PhysRevB.48.17181 pmid: 10008326
38 Tsuzuki H, Cesar D F, Dias M R, Castelano L K, Lopez-Richard V, Rino J P, Marques G E. Tailoring electronic transparency of twin-plane 1D superlattices. ACS Nano, 2011, 5(7): 5519–5525
https://doi.org/10.1021/nn2008589 pmid: 21662973
39 Akiyama T, Yamashita T, Nakamura K, Ito T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano Letters, 2010, 10(11): 4614–4618
https://doi.org/10.1021/nl1027099 pmid: 20932044
40 Shimamura K, Yuan Z, Shimojo F, Nakano A. Effects of twins on the electronic properties of GaAs. Applied Physics Letters, 2013, 103(2): 022105–022109
https://doi.org/10.1063/1.4811746
41 Johansson J, Karlsson L S, Svensson C P T, Mårtensson T, Wacaser B A, Deppert K, Samuelson L, Seifert W. Structural properties of<111>B-oriented III-V nanowires. Nature Materials, 2006, 5(7): 574–580
https://doi.org/10.1038/nmat1677 pmid: 16783358
42 Shen G, Xu J, Wang X, Huang H, Chen D. Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Advanced Materials, 2011, 23(6): 771–775
https://doi.org/10.1002/adma.201003474 pmid: 21287640
43 Shao D, Gao J, Chow P, Sun H, Xin G, Sharma P, Lian J, Koratkar N A, Sawyer S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Letters, 2015, 15(6): 3787–3792
https://doi.org/10.1021/acs.nanolett.5b00380 pmid: 25938811
44 Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19–38
https://doi.org/10.1166/jno.2006.002
45 Zhai T, Ma Y, Li L, Fang X, Liao M, Koide Y, Yao J, Bando Y, Golberg D. Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20(32): 6630–6637
https://doi.org/10.1039/c0jm01013h
46 Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L 2nd, Yu B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1): 514–521
https://doi.org/10.1021/nn405037s pmid: 24359117
Related articles from Frontiers Journals
[1] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[4] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[5] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B[J]. Front Optoelec Chin, 2011, 4(2): 171-175.
[6] Zhenghua WANG, Shiyu ZHU. Rapid growth of t-Se nanowires in acetone at room temperature and their photoelectrical properties[J]. Front Optoelec Chin, 2011, 4(2): 188-194.
[7] Ronghui QUE. High-yield synthesized silver orthophosphate nanowires and their application in photoswitch[J]. Front Optoelec Chin, 2011, 4(2): 176-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed