Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity
Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN
Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity
Longitudinal twinning α-In2Se3 nanowires with the (108) twin plane were synthesized to fabricate high performance single nanowire based photodetectors. As-synthesized α-In2Se3 nanowire exhibited typical n-type semiconducting behavior with an electron mobility of 23.1 cm2·V−1·S−1 and a broadband spectral response from 300 to 1100 nm, covering the ultraviolet-visible-near-infrared (UV-visible-NIR) region. Besides, the fabricated device showed a high responsivity of 8.57 × 105 A·W−1, high external quantum efficiency up to 8.8 × 107% and a high detectivity of 1.58 × 1012 Jones under 600 nm light illumination at a basis of 3 V, which are much higher than previously reported In2Se3 nanostructures due to the interface defect effect of the twin plane. The results indicated that the longitudinal twinning α-In2Se3 nanowires have immense potential for further applications in highly performance broadband photodetectors and other optoelectronic devices.
photodetectors / nanowires / twinning / ultraviolet-visible-near-infrared (UV-visible-NIR)
[1] |
Fan Z, Ho J C, Jacobson Z A, Razavi H, Javey A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11066–11070
CrossRef
Pubmed
Google scholar
|
[2] |
Li L, Gu L, Lou Z, Fan Z, Shen G. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4): 4067–4076
CrossRef
Pubmed
Google scholar
|
[3] |
Kind H, Yan H, Messer B, Law M, Yang P. NW ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
CrossRef
Google scholar
|
[4] |
Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks T J, Janes D B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384
CrossRef
Pubmed
Google scholar
|
[5] |
Yoo J, Jeong S, Kim S, Je J H. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Advanced Materials, 2015, 27(10): 1712–1717
CrossRef
Pubmed
Google scholar
|
[6] |
Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, Huang H, Xu J, Han H, Chen D, Shen G. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano, 2011, 5(10): 8412–8419
CrossRef
Pubmed
Google scholar
|
[7] |
Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8(7): 2162–2169
CrossRef
Google scholar
|
[8] |
Park C M, Sohn H J. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Advanced Materials, 2010, 22(1): 47–52
CrossRef
Pubmed
Google scholar
|
[9] |
Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Letters, 2012, 12(6): 3005–3011
CrossRef
Pubmed
Google scholar
|
[10] |
Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 2003, 125(52): 16176–16177
CrossRef
Pubmed
Google scholar
|
[11] |
Liu X, Liu X, Wang J, Liao C, Xiao X, Guo S, Jiang C, Fan Z, Wang T, Chen X, Lu W, Hu W, Liao L. Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2-nanowire composite and their application in photodetectors. Advanced Materials, 2014, 26(43): 7399–7404
CrossRef
Pubmed
Google scholar
|
[12] |
Feng G, Yang C, Zhou S. Nanocrystalline Cr2+-doped ZnSe nanowires laser. Nano Letters, 2013, 13(1): 272–275
CrossRef
Pubmed
Google scholar
|
[13] |
Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7(11): 5046–5052
CrossRef
Pubmed
Google scholar
|
[14] |
Wang Z, Safdar M, Jiang C, He J. High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Letters, 2012, 12(9): 4715–4721
CrossRef
Pubmed
Google scholar
|
[15] |
Zhai T, Fang X, Liao M, Xu X, Li L, Liu B, Koide Y, Ma Y, Yao J, Bando Y, Golberg D. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano, 2010, 4(3): 1596–1602
CrossRef
Pubmed
Google scholar
|
[16] |
Peng H, Zhang X F, Twesten R D, Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2(4): 327–335
CrossRef
Google scholar
|
[17] |
Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, Zhang W J, Kwong H L, Meng X M, Lee S T, Lee C S. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application. ACS Nano, 2010, 4(10): 6064–6070
CrossRef
Pubmed
Google scholar
|
[18] |
Julien C, Hatzikraniotis E, Chevy A, Kambas K. Electrical behavior of lithium intercalated layered In-Se compounds. Materials Research Bulletin, 1985, 20(3): 287–292
CrossRef
Google scholar
|
[19] |
Li Q, Li Y, Gao J, Wang S, Sun X. High performance single In2Se3 nanowire photodetector. Applied Physics Letters, 2011, 99(24): 243105–243109
CrossRef
Google scholar
|
[20] |
Ali Z, Mirza M, Cao C, Butt F K, Tanveer M, Tahir M, Aslam I, Idrees F, Safdar M. Wide range photodetector based on catalyst free grown indium selenide microwires. ACS Applied Materials & Interfaces, 2014, 6(12): 9550–9556
CrossRef
Pubmed
Google scholar
|
[21] |
Kang D, Rim T, Baek C K, Meyyappan M, Lee J S. Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors. Small, 2014, 10(18): 3795–3802
CrossRef
Pubmed
Google scholar
|
[22] |
Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. Journal of the American Chemical Society, 2007, 129(1): 34–35
CrossRef
Pubmed
Google scholar
|
[23] |
Jasinski J, Swider W, Washburn J, Liliental-Weber Z, Chaiken A, Nauka K, Gibson G A, Yang C C. Crystal structure of k-In2Se3. Applied Physics Letters, 2002, 81(23): 4356–4358
CrossRef
Google scholar
|
[24] |
Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Solar Energy Materials and Solar Cells, 1994, 32(1): 7–19
CrossRef
Google scholar
|
[25] |
Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A, Shen Z X. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Letters, 2009, 9(3): 1265–1269
CrossRef
Pubmed
Google scholar
|
[26] |
Yu B, Ju S, Sun X H, Ng G, Nguyen T D, Meyyappan M, Janes D B. Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91(13): 133119–133121
CrossRef
Google scholar
|
[27] |
Algra R E, Verheijen M A, Borgström M T, Feiner L F, Immink G, van Enckevort W J, Vlieg E, Bakkers E P. Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456(7220): 369–372
CrossRef
Pubmed
Google scholar
|
[28] |
Grap T, Rieger T, Blömers Ch, Schäpers T, Grützmacher D, Lepsa M I. Self-catalyzed VLS grown InAs nanowires with twinning superlattices. Nanotechnology, 2013, 24(33): 335601
CrossRef
Pubmed
Google scholar
|
[29] |
Algra R E, Verheijen M A, Feiner L F, Immink G G W, Enckevort W J, Vlieg E, Bakkers E P A M. The role of surface energies and chemical potential during nanowire growth. Nano Letters, 2011, 11(3): 1259–1264
CrossRef
Pubmed
Google scholar
|
[30] |
Burgess T, Breuer S, Caroff P, Wong-Leung J, Gao Q, Hoe Tan H, Jagadish C. Twinning superlattice formation in GaAs nanowires. ACS Nano, 2013, 7(9): 8105–8114
CrossRef
Pubmed
Google scholar
|
[31] |
Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures. Journal of Crystal Growth, 2008, 310(20): 4481–4486
CrossRef
Google scholar
|
[32] |
Hao Y, Meng G, Wang Z L, Ye C, Zhang L. Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth. Nano Letters, 2006, 6(8): 1650–1655
CrossRef
Pubmed
Google scholar
|
[33] |
Wang J, Sun X W, Xie S, Zhou W, Yang Y. Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Crystal Growth & Design, 2008, 8(2): 707–710
CrossRef
Google scholar
|
[34] |
Kim H S, Myung Y, Cho Y J, Jang D M, Jung C S, Park J, Ahn J P. Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography. Nano Letters, 2010, 10(5): 1682–1691
CrossRef
Pubmed
Google scholar
|
[35] |
Xu J, Lu A J, Wang C, Zou R, Liu X, Wu X, Wang Y, Li S, Sun L, Chen X, Oh H, Baek H, Yi G, Chu L. ZnSe-based longitudinal twinning nanowires. Advanced Engineering Materials, 2014, 16(4): 459–465
CrossRef
Google scholar
|
[36] |
Xu J, Wang C, Zhang Y, Liu X, Liu X, Huang S, Chen X. Structural, vibrational and luminescence properties of longitudinal twinning Zn2GeO4 nanowires. CrystEngComm, 2013, 15(4): 764–768
CrossRef
Google scholar
|
[37] |
Ikonić Z, Srivastava G P, Inkson J C. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. Physical Review B: Condensed Matter, 1993, 48(23): 17181–17193
CrossRef
Pubmed
Google scholar
|
[38] |
Tsuzuki H, Cesar D F, Dias M R, Castelano L K, Lopez-Richard V, Rino J P, Marques G E. Tailoring electronic transparency of twin-plane 1D superlattices. ACS Nano, 2011, 5(7): 5519–5525
CrossRef
Pubmed
Google scholar
|
[39] |
Akiyama T, Yamashita T, Nakamura K, Ito T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano Letters, 2010, 10(11): 4614–4618
CrossRef
Pubmed
Google scholar
|
[40] |
Shimamura K, Yuan Z, Shimojo F, Nakano A. Effects of twins on the electronic properties of GaAs. Applied Physics Letters, 2013, 103(2): 022105–022109
CrossRef
Google scholar
|
[41] |
Johansson J, Karlsson L S, Svensson C P T, Mårtensson T, Wacaser B A, Deppert K, Samuelson L, Seifert W. Structural properties of<111>B-oriented III-V nanowires. Nature Materials, 2006, 5(7): 574–580
CrossRef
Pubmed
Google scholar
|
[42] |
Shen G, Xu J, Wang X, Huang H, Chen D. Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Advanced Materials, 2011, 23(6): 771–775
CrossRef
Pubmed
Google scholar
|
[43] |
Shao D, Gao J, Chow P, Sun H, Xin G, Sharma P, Lian J, Koratkar N A, Sawyer S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Letters, 2015, 15(6): 3787–3792
CrossRef
Pubmed
Google scholar
|
[44] |
Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19–38
CrossRef
Google scholar
|
[45] |
Zhai T, Ma Y, Li L, Fang X, Liao M, Koide Y, Yao J, Bando Y, Golberg D. Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20(32): 6630–6637
CrossRef
Google scholar
|
[46] |
Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L 2nd, Yu B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1): 514–521
CrossRef
Pubmed
Google scholar
|
Figs. S1 (a) Full scale XPS scan, (b) in peaks, and (c) Se 3d doublets of the synthesized α-In2Se3 nanowires
Figs. S2 (a) TEM image, and (b) SAED pattern of the synthesized twinned α-In2Se3 nanowires
Figs. S3 Key device figures-of-merit, EQE and specific detectivity of the devices measured at different power intensities of 600 nm light illumination at a 3 V bias
Figs. S4I-V curves of the device illuminated with incident light of various wavelengths and in the dark, respectively
Figs. S5 (a) Time-resolved photoresponse characteristics of the device at a bias of 1 V in 300 nm with different light intensities. (b) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.97. (c) Time-resolved photoresponse characteristics of the device at a bias of 3 V in 800 nm with different light intensities. (d) Photocurrent and responsivity as a function of light power intensity in 300 nm. The fitting result is Iph~P0.94
/
〈 | 〉 |