On-chip frequency combs and telecommunications signal processing meet quantum optics
Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero CORTÉS, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo CINO, Sai Tak CHU, Brent LITTLE, David MOSS, Lucia CASPANI, José AZAÑA, Michael KUES, Roberto MORANDOTTI
On-chip frequency combs and telecommunications signal processing meet quantum optics
Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip non-classical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing large potential is the use of the time or frequency domain to enabled the scalable on-chip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunications components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recently been realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications components. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science.
nonlinear optics / quantum optics / entangled photons
[1] |
Lloyd S. Universal quantum simulators. Science, 1996, 273(5278): 1073–1078
CrossRef
Pubmed
Google scholar
|
[2] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L. Quantum computers. Nature, 2010, 464(7285): 45–53
CrossRef
Pubmed
Google scholar
|
[3] |
O’Brien J L. Optical quantum computing. Science, 2007, 318(5856): 1567–1570
CrossRef
Pubmed
Google scholar
|
[4] |
Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380
CrossRef
Pubmed
Google scholar
|
[5] |
Kimble H J. The quantum internet. Nature, 2008, 453(7198): 1023–1030
CrossRef
Pubmed
Google scholar
|
[6] |
Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W. Experimental ten-photon entanglement. Physical Review Letters, 2016, 117(21): 210502
CrossRef
Pubmed
Google scholar
|
[7] |
Yao X C, Wang T X, Chen H Z, Gao W B, Fowler A G, Raussendorf R, Chen Z B, Liu N L, Lu C Y, Deng Y J, Chen Y A, Pan J W. Experimental demonstration of topological error correction. Nature, 2012, 482(7386): 489–494
CrossRef
Pubmed
Google scholar
|
[8] |
Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W. Experimental entanglement of six photons in graph states. Nature Physics, 2007, 3(2): 91–95
CrossRef
Google scholar
|
[9] |
Blatt R, Wineland D. Entangled states of trapped atomic ions. Nature, 2008, 453(7198): 1008–1015
CrossRef
Pubmed
Google scholar
|
[10] |
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242–246
CrossRef
Pubmed
Google scholar
|
[11] |
Kwiat P G. Hyper-entangled states. Journal of Modern Optics, 1997, 44(11–12): 2173–2184
CrossRef
Google scholar
|
[12] |
Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501
CrossRef
Pubmed
Google scholar
|
[13] |
Xie Z, Zhong T, Shrestha S, Xu X A, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C. Harnessing high-dimensinal hyperentanglement through a biphoton frequency comb. Nature Photonics, 2015, 9(8): 536–542
CrossRef
Google scholar
|
[14] |
Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416(6877): 233–237
CrossRef
Pubmed
Google scholar
|
[15] |
Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Pysher M, Pfister O. Entangling the optical frequency comb: Simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator. Laser Physics, 2008, 18(5): 659–666
CrossRef
Google scholar
|
[16] |
Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nature Photonics, 2014, 8(2): 109–112
CrossRef
Google scholar
|
[17] |
Reimer C, Caspani L, Clerici M, Ferrera M, Kues M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22(6): 6535–6546
CrossRef
Pubmed
Google scholar
|
[18] |
Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Physical Review X, 2014, 4(4): 041047
CrossRef
Google scholar
|
[19] |
Azzini S, Grassani D, Strain M J, Sorel M, Helt L G, Sipe J E, Liscidini M, Galli M, Bajoni D. Ultra-low power generation of twin photons in a compact silicon ring resonator. Optics Express, 2012, 20(21): 23100–23107
CrossRef
Pubmed
Google scholar
|
[20] |
Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6(1): 8236
CrossRef
Pubmed
Google scholar
|
[21] |
Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light, Science & Applications, 2017, 6(11): e17100
CrossRef
Google scholar
|
[22] |
Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351(6278): 1176–1180
CrossRef
Pubmed
Google scholar
|
[23] |
Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle É, Belabas-Plougonven N, Le Roux X, Cassan É, Marris-Morini D, Vivien L, Sauder G, Labonté L, Tanzilli S. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Optics Express, 2016, 24(25): 28731–28738
CrossRef
Pubmed
Google scholar
|
[24] |
Jaramillo-Villegas J A, Imany P, Odele O D, Leaird D E, Ou Z Y, Qi M, Weiner A M. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 2017, 4(6): 655–658
CrossRef
Google scholar
|
[25] |
Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J E, Bajoni D. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2(2): 88–94
CrossRef
Google scholar
|
[26] |
Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O’Brien J L, Thompson M G. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nature Communications, 2015, 6(1): 7948
CrossRef
Pubmed
Google scholar
|
[27] |
Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622–626
CrossRef
Pubmed
Google scholar
|
[28] |
Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photonics, 2013, 7(12): 982–986
CrossRef
Google scholar
|
[29] |
Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Physical Review Letters, 2011, 107(3): 030505
CrossRef
Pubmed
Google scholar
|
[30] |
Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Physical Review Letters, 2014, 112(12): 120505
CrossRef
Pubmed
Google scholar
|
[31] |
Lukens J M, Lougovski P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 2017, 4(1): 8–16
CrossRef
Google scholar
|
[32] |
Gerke S, Sperling J, Vogel W, Cai Y, Roslund J, Treps N, Fabre C. Full multipartite entanglement of frequency-comb Gaussian states. Physical Review Letters, 2015, 114(5): 050501
CrossRef
Pubmed
Google scholar
|
[33] |
Menicucci N C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Physical Review Letters, 2014, 112(12): 120504
CrossRef
Pubmed
Google scholar
|
[34] |
Bonneau D, Silverstone J W, Thompson M G. In: Pavesi L, Lockwood D J, eds. Silicon Photonics III. Heidelberg: Springer, 2016, 41–82
|
[35] |
Tanzilli S, Martin A, Kaiser F, De Micheli M P, Alibart O, Ostrowsky D B. On the genesis and evolution of integrated quantum optics. Laser & Photonics Reviews, 2012, 6(1): 115–143
CrossRef
Google scholar
|
[36] |
Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L, Kumar P. Generation of correlated photons in nanoscale silicon waveguides. Optics Express, 2006, 14(25): 12388–12393
CrossRef
Pubmed
Google scholar
|
[37] |
Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O’Brien J L, Thompson M G. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Optics Express, 2013, 21(23): 27826–27834
CrossRef
Pubmed
Google scholar
|
[38] |
Horn R T, Kolenderski P, Kang D, Abolghasem P, Scarcella C, Frera A D, Tosi A, Helt L G, Zhukovsky S V, Sipe J E, Weihs G, Helmy A S, Jennewein T. Inherent polarization entanglement generated from a monolithic semiconductor chip. Scientific Reports, 2013, 3(1): 2314
CrossRef
Pubmed
Google scholar
|
[39] |
Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M, Marshall G D, Thompson M G, Matthews J C, Hashimoto T, O’Brien J L, Laing A. Universal linear optics. Science, 2015, 349(6249): 711–716
CrossRef
Pubmed
Google scholar
|
[40] |
Politi A, Matthews J C F, O’Brien J L. Shor’s quantum factoring algorithm on a photonic chip. Science, 2009, 325(5945): 1221
CrossRef
Pubmed
Google scholar
|
[41] |
Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798–801
CrossRef
Pubmed
Google scholar
|
[42] |
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559
CrossRef
Pubmed
Google scholar
|
[43] |
Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M, Morandotti R. Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729: 1–81
CrossRef
Google scholar
|
[44] |
Jiang W C, Lu X, Zhang J, Painter O, Lin Q. Silicon-chip source of bright photon pairs. Optics Express, 2015, 23(16): 20884–20904
CrossRef
Pubmed
Google scholar
|
[45] |
Hemsley E, Bonneau D, Pelc J, Beausoleil R, O’Brien J L, Thompson M G. Photon pair generation in hydrogenated amorphous silicon microring resonators. Scientific Reports, 2016, 6(1): 38908
CrossRef
Pubmed
Google scholar
|
[46] |
Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750
CrossRef
Pubmed
Google scholar
|
[47] |
Roztocki P, Kues M, Reimer C, Wetzel B, Sciara S, Zhang Y, Cino A, Little B E, Chu S T, Moss D J, Morandotti R. Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25(16): 18940–18949
CrossRef
Pubmed
Google scholar
|
[48] |
Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics, 2013, 7(8): 597–607
CrossRef
Google scholar
|
[49] |
Caspani L, Reimer C, Kues M, Roztocki P, Clerici M, Wetzel B, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 2016, 5(2): 351–362
CrossRef
Google scholar
|
[50] |
Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light: Science & Applications, 2017, 6: e17100
|
[50] |
Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M, Weiner A M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Optics Express, 2018, 26(2): 1825–1840
CrossRef
Pubmed
Google scholar
|
[51] |
Lu H H, Lukens J M, Peters N A, Odele O D, Leaird D E, Weiner A M, Lougovski P. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Physical Review Letters, 2018, 120(3): 030502
CrossRef
Pubmed
Google scholar
|
[52] |
Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M, Lougovski P. Controllable two-photon interference with versatile quantum frequency processor. arXiv preprint arXiv:1803.10712 (2018)
|
/
〈 | 〉 |