Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (3) : 291-295     https://doi.org/10.1007/s12200-018-0803-3
RESEARCH ARTICLE |
Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides
Xiaoliang SHEN1, Yue WANG1, Haitao GUO2, Chunxiao LIU1()
1. College of Electronic and Optical Engineering, College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an 710119, China
Download: PDF(494 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Er3+/Yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 1013 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical-integrated photonic devices at near-infrared band.

Keywords waveguide      Er3+/Yb3+ co-doped phosphate (EYDP) glasses      carbon-ion implantation     
Corresponding Authors: Chunxiao LIU   
Just Accepted Date: 10 April 2018   Online First Date: 28 April 2018    Issue Date: 31 August 2018
 Cite this article:   
Xiaoliang SHEN,Yue WANG,Haitao GUO, et al. Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides[J]. Front. Optoelectron., 2018, 11(3): 291-295.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0803-3
http://journal.hep.com.cn/foe/EN/Y2018/V11/I3/291
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoliang SHEN
Yue WANG
Haitao GUO
Chunxiao LIU
Fig.1  (a) Transmittance spectrum and (b) refractive index of the EYDP glass
Fig.2  (a) Photoluminescence spectrum and (b) lifetime curve of the EYDP glass
Fig.3  Energy losses versus the penetration depth for the 6.0 MeV carbon implantation into the EYDP glass
Fig.4  Relative intensity of light as a function of the effective refractive index at a wavelength of 1539 nm for the modes in the carbon-implanted EYDP glass waveguide
Fig.5  Microscope image of the cross section for the carbon-implanted EYDP glass waveguide
1 Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403
https://doi.org/10.1002/lpor.201000015
2 Tervonen A, Honkanen S K, West B R. Ion-exchanged glass waveguide technology: a review. Optical Engineering (Redondo Beach, Calif.), 2011, 50(7): 071107
https://doi.org/10.1117/1.3559213
3 He Z A, Li Y G, Zhang Y W, Li D X, Liu L Y, Xu L. Er3+/Yb3+ co-doped waveguide amplifier and lossless power splitter fabricated by a two-step ion exchange on a commercial phosphate glass. Journal of the Korean Physical Society, 2006, 49(5): 2159–2163
4 Vallés J A, Rebolledo M A, Cortés J. Full characterization of packaged Er-Yb-codoped phosphate glass waveguides. IEEE Journal of Quantum Electronics, 2006, 42(2): 152–159
https://doi.org/10.1109/JQE.2005.861825
5 Taccheo S, Valle G D, Osellame R, Cerullo G, Chiodo N, Laporta P, Svelto O, Killi A, Morgner U, Lederer M, Kopf D. Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. Optics Letters, 2004, 29(22): 2626–2628
https://doi.org/10.1364/OL.29.002626 pmid: 15552666
6 Tan Y, Chen F, Hu L L, Xing P F, Chen Y X, Wang X L, Wang K M. Ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass produced by He+ ion implantation combined with Ar+ ion beam etching. Journal of Physics D, Applied Physics, 2007, 40(21): 6545–6548
https://doi.org/10.1088/0022-3727/40/21/013
7 Zhao R T, Wang M, Chen B J, Liu K, Pun E Y B, Lin H. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing. Optical Engineering (Redondo Beach, Calif.), 2011, 50(4): 044602
https://doi.org/10.1117/1.3562983
8 Chen C, He R Y, Tan Y, Wang B, Akhmadaliev S, Zhou S Q, de Aldana J R V, Hu L L, Chen F. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions. Optical Materials, 2016, 51: 185–189
https://doi.org/10.1016/j.optmat.2015.11.042
9 Kip D. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Applied Physics B, Lasers and Optics, 1998, 67(2): 131–150
https://doi.org/10.1007/s003400050485
10 Wang L, Haunhorst C E, Volk M F, Chen F, Kip D. Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals. Optics Express, 2015, 23(23): 30188–30194
https://doi.org/10.1364/OE.23.030188 pmid: 26698499
11 Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J, Trejo-Luna R. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Optics & Laser Technology, 2016, 79: 132–136
https://doi.org/10.1016/j.optlastec.2015.12.002
12 Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S, Nunzi-Conti G. Leaky mode suppression in planar optical waveguides written in Er:TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions. Nuclear Instruments & Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms, 2014, 326: 81–85
https://doi.org/10.1016/j.nimb.2013.10.039
13 Wang X L, Wang K M, Fu G, Li S L, Shen D Y, Ma H J, Nie R. Low propagation loss of the waveguides in fused quartz by oxygen ion implantation. Optics Express, 2004, 12(20): 4675–4680
https://doi.org/10.1364/OPEX.12.004675 pmid: 19484019
14 Chen F, Wang X L, Li X S, Hu L L, Lu Q M, Wang K M, Shi B R, Shen D Y. Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass. Applied Surface Science, 2002, 193(1-4): 92–101
https://doi.org/10.1016/S0169-4332(02)00212-X
15 Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews, 2012, 6(5): 622–640
https://doi.org/10.1002/lpor.201100037
16 Liu C X, Fu L L, Zhang L L, Guo H T, Li W N, Lin S B, Wei W. Carbon-implanted monomode waveguides in magneto-optical glasses for waveguide isolators. Applied Physics. A, Materials Science & Processing, 2016, 122(2): 94
https://doi.org/10.1007/s00339-016-9631-8
17 Chen F, Wang X L, Wang K M. Developments of ion implanted optical waveguides in optical materials: a review. Optical Materials, 2007, 29(11): 1523–1542
https://doi.org/10.1016/j.optmat.2006.08.001
18 Tan Y, Chen F, Wang L, Jiao Y. Carbon ion-implanted optical waveguides in Nd:YLiF4 crystal: refractive index profiles and thermal stability. Nuclear Instruments & Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms, 2007, 260(2): 567–570
https://doi.org/10.1016/j.nimb.2007.04.216
19 Liu C X, Xu J, Fu L L, Zheng R L, Zhou Z G, Li W N, Guo H T, Lin S B, Wei W. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses. Optical Engineering (Redondo Beach, Calif.), 2015, 54(6): 067106
https://doi.org/10.1117/1.OE.54.6.067106
20 Tan Y, Zhang C, Chen F, Liu F Q, Jaque D, Lu Q M. Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation. Applied Physics B, Lasers and Optics, 2011, 103(4): 837–840
https://doi.org/10.1007/s00340-010-4260-y
21 Ziegler J F. SRIM-The Stopping and Range of Ions in Matter,
22 Zhu Q F, Shen X L, Zheng R L, Lv P, Guo H T, Li W N, Liu C X. Waveguiding structures in Yb3+-doped phosphate glasses by double-energy proton and single-energy carbon-ion implantations. Materials Research Express, 2018, 5(1): 016404
https://doi.org/10.1088/2053-1591/aaa1f7
Related articles from Frontiers Journals
[1] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[2] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[3] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[4] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[5] Ya’nan WANG,Yi LUO,Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
[6] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[7] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[8] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
[9] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[10] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[11] Dingbo CHEN,Jeffery BLOCH,Rui WANG,Paul K. L. YU. Absorption density control in waveguide photodiode---analysis, design, and demonstration[J]. Front. Optoelectron., 2014, 7(3): 385-392.
[12] Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Front Optoelec, 2013, 6(3): 261-269.
[13] Sijun WENG, Li PEI, Ruifeng ZHAO, Junjie YANG, Yiqun WANG. Optical devices based on multilayer optical waveguide[J]. Front Optoelec, 2013, 6(2): 146-152.
[14] Muhammad Idrees AFRIDI, Jie ZHANG, Yousaf KHAN, Jiawei HAN, Aftab HUSSEIN, Shahab AHMAD. Impact of Rayleigh backscattering on single/dual feeder fiber WDM-PON architectures based on array waveguide gratings[J]. Front Optoelec, 2013, 6(1): 102-107.
[15] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed