Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 53-59     https://doi.org/10.1007/s12200-018-0774-4
REVIEW ARTICLE |
Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM
Peng WANG(), Aron MICHAEL, Chee Yee KWOK
School of Electrical Engineering and Telecommunications, University of New South Wales, Kensington, NSW 2052, Australia
Download: PDF(218 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy (HS-AFM). A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed. The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM. The approach consists of low loss silicon waveguide with nano-gap, highly efficient misalignment tolerant coupler, novel high aspect ratio (HAR) sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators. The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach. The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes, respectively, and formation of 13 nm wide nano-gaps between silicon waveguides. The coupler demonstrates misalignment tolerance of ±1.8 µm for 5 µm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance. The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nano-tip fabrication technique. Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.

Keywords atomic force microscopy (AFM)      silicon waveguide      silicon coupler      high aspect ratio (HAR) nano-tips     
Corresponding Authors: Peng WANG   
Online First Date: 23 March 2018    Issue Date: 02 April 2018
 Cite this article:   
Peng WANG,Aron MICHAEL,Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0774-4
http://journal.hep.com.cn/foe/EN/Y2018/V11/I1/53
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng WANG
Aron MICHAEL
Chee Yee KWOK
Fig.1  Schematic diagram of the optical sensor system. (a) 3D view; (b) top view
Fig.2  500 nm silicon waveguide with 25 nm air gap. (a) 45° view; (b) top view
Fig.3  (a) Coupler schematic top view; (b) coupler schematic side view
Fig.4  SEM image of array of HAR nanotips integrated with array of nanocantilever viewed at 45°
Fig.5  Measured and simulated cantilever displacement as a function of actuation voltage
1 Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933
https://doi.org/10.1103/PhysRevLett.56.930 pmid: 10033323
2 Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5(3): 208–212
https://doi.org/10.1038/nnano.2010.7 pmid: 20154686
3 Somnath S, Kim H J, Hu H, King W P. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25(1): 014001
https://doi.org/10.1088/0957-4484/25/1/014001 pmid: 24334342
4 Pantazi A, Sebastian A, Antonakopoulos T A, Bächtold P, Bonaccio A R, Bonan J, Cherubini G, Despont M, DiPietro R A, Drechsler U, Dürig U, Gotsmann B, Häberle W, Hagleitner C, Hedrick J L, Jubin D, Knoll A, Lantz M A, Pentarakis J, Pozidis H, Pratt R C, Rothuizen H, Stutz R, Varsamou M, Wiesmann D, Eleftheriou E. Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 2008, 52(4.5): 493–511
https://doi.org/10.1147/rd.524.0493
5 Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A high-speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12468–12472
https://doi.org/10.1073/pnas.211400898 pmid: 11592975
6 Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84(7): 073706
https://doi.org/10.1063/1.4813280 pmid: 23902075
7 Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
https://doi.org/10.1364/OE.17.004752 pmid: 19293905
8 Minne S C, Yaralioglu G, Manalis S R, Adams J D, Zesch J, Atalar A, Quate C F. Automated parallel high-speed atomic force microscopy. Applied Physics Letters, 1998, 72(18): 2340–2342
https://doi.org/10.1063/1.121353
9 Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393
https://doi.org/10.1038/srep16393 pmid: 26574164
10 Giessibl J F. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Applied Physics Letters, 1998, 73(26): 3956–3958
https://doi.org/10.1063/1.122948
11 Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1990, 8(1): 383–387
https://doi.org/10.1116/1.576401
12 von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M. Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7: 841–851
https://doi.org/10.3762/bjnano.7.76 PMID:27547601
13 Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
https://doi.org/10.1364/OE.17.004752 pmid: 19293905
14 Lee D H, Choo S J, Jung U, Lee K W, Kim K W, Park J H. Low-loss silicon waveguide with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of Micromechanics and Microengineering, 2015, 25(1): 015003
https://doi.org/10.1088/0960-1317/25/1/015003
15 Dong P, Qian W, Liao S, Liang H, Kung C C, Feng N N, Shafiiha R, Fong J, Feng D, Krishnamoorthy A V, Asghari M. Low loss shallow-ridge silicon waveguides. Optics Express, 2010, 18(14): 14474–14479
https://doi.org/10.1364/OE.18.014474 pmid: 20639932
16 Debnath K, Arimoto H, Husain M, Prasmusinto A, Al-Attili A, Petra R, Chong H, Reed G, Saito S. Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique. Frontiers in Materials, 2016, 3, doi: 10.3389/famts.2016.00010
17 Pafchek R, Tummidi R, Li J, Webster M A, Chen E, Koch T L. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied Optics, 2009, 48(5): 958–963
https://doi.org/10.1364/AO.48.000958 pmid: 19209210
18 Lee K K, Lim D R, Kimerling L C, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888–1890
https://doi.org/10.1364/OL.26.001888 pmid: 18059727
19 Wang P, Michael A, Kwok C Y. Fabrication of sub-micro waveguides with vertical sidewall and reduced roughness for low loss applications. Procedia Engineering, 2014, 87: 979–982
https://doi.org/10.1016/j.proeng.2014.11.322
20 Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006, 45(8A): 6071–6077
https://doi.org/10.1143/JJAP.45.6071
21 Tang Y, Wang Z, Wosinski L, Westergren U, He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010, 35(8): 1290–1292
https://doi.org/10.1364/OL.35.001290 pmid: 20410996
22 Cardenas J, Poitras C B, Luke K, Luo L W, Morton P A, Lipson M. High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photonics Technology Letters, 2014, 26(23): 2380–2382
https://doi.org/10.1109/LPT.2014.2357177
23 Dewanjee A, Caspers J N, Aitchison J S, Mojahedi M. Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity. Optics Express, 2016, 24(25): 28194–28203
https://doi.org/10.1364/OE.24.028194 pmid: 27958531
24 Fang Q, Liow T Y, Song J F, Tan C W, Yu M B, Lo G Q, Kwong D L. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Optics Express, 2010, 18(8): 7763–7769
https://doi.org/10.1364/OE.18.007763 pmid: 20588617
25 Chen L, Doerr C R, Chen Y K, Liow T Y. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technology Letters, 2010, 22(23): 1744–1746
https://doi.org/10.1109/LPT.2010.2085040
26 Wang P, Michael A, Kwok C Y. Cantilever inverse taper coupler with SiO2 gap for submicron silicon waveguides. IEEE Photonics Technology Letters, 2017, 29(16): 1407–1410
https://doi.org/10.1109/LPT.2017.2723901
27 Koelmans W W, Peters T, Berenschot E, de Boer M J, Siekman M H, Abelmann L. Cantilever arrays with self-aligned nanotips of uniform height. Nanotechnology, 2012, 23(13): 135301
https://doi.org/10.1088/0957-4484/23/13/135301 pmid: 22418861
28 Vermeer R, Berenschot E, Sarajlic E, Tas N, Jansen H. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips. In: Proceedings of 14th IEEE International Conference on Nanotechnology, 2014, 229–233
29 Li J D, Xie J, Xue W, Wu D M. Fabrication of cantilever with self-sharpening nano-silicon-tip for AFM applications. Microsystem Technologies, 2013, 19(2): 285–290
https://doi.org/10.1007/s00542-012-1622-x
30 Miyazawa K, Izumi H, Watanabe-Nakayama T, Asakawa H, Fukuma T. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid. Nanotechnology, 2015, 26(10): 105707
https://doi.org/10.1088/0957-4484/26/10/105707 pmid: 25697199
31 Beard J D, Gordeev S N. Fabrication and buckling dynamics of nanoneedle AFM probes. Nanotechnology, 2011, 22(17): 175303
https://doi.org/10.1088/0957-4484/22/17/175303 pmid: 21411916
32 Engstrom D S, Savu V, Zhu X, Bu I Y, Milne W I, Brugger J, Boggild P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Letters, 2011, 11(4): 1568–1574
https://doi.org/10.1021/nl104384b pmid: 21446752
33 Edgeworth J P, Burt D P, Dobson P S, Weaver J M R, Macpherson J V. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. Nanotechnology, 2010, 21(10): 105605
https://doi.org/10.1088/0957-4484/21/10/105605 pmid: 20160341
34 Spindt C A. A thin film field emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505
https://doi.org/10.1063/1.1656810
35 Itoh S, Watanabe T, Ohtsu K, Taniguchi M, Uzawa S, Nishimura N. Experimental study of field emission properties of the Spindt‐type field emitter. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1995, 13(2): 487–490
https://doi.org/10.1116/1.588339
36 Spindt C A, Holland C E, Schwoebel P R, Brodie I. Field emitter array development for microwave applications. II. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1998, 16(2): 758–761
https://doi.org/10.1116/1.589898
37 Wang P, Michael A, Kwok C Y.High aspect ratio sharp nanotip for nanocantilever integration at CMOS compatible temperature. Nanotechnology, 2017, 28(32): 32T01
38 Minne S C, Adams J D, Yaralioglu G, Manalis S R, Atalar A, Quate C F. Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 1998, 73(12): 1742–1744
https://doi.org/10.1063/1.122263
39 Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393
https://doi.org/10.1038/srep16393 pmid: 26574164
40 Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4(6): 377–382
https://doi.org/10.1038/nnano.2009.92 pmid: 19498400
Related articles from Frontiers Journals
[1] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
[2] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
[3] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed