Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (3) : 285-290     https://doi.org/10.1007/s12200-018-0758-4
RESEARCH ARTICLE |
ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells
Xiaoyan HU, Heng WANG()
College of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China
Download: PDF(1657 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye-sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses by a hydrothermal method, and then ZnO/Nb2O5 core/shell nanorod array was directly obtained via solvothermal reaction in NbCl5 solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images revealed that the ZnO nanorods were uniformly wrapped by Nb2O5 shell layers with a thickness of 30–40 nm. Photovoltaic characterization showed that the device based on ZnO/Nb2O5 core/shell nanorod photoanode exhibited an improved efficiency of 1.995%, which was much higher than the efficiency of 0.856% for the DSSC based on bare ZnO nanorod photoanode. This proved that the photovoltaic performance of ZnO nanorods could be improved by wrapping with Nb2O5 shells.

Keywords ZnO      Nb2O5      core/shell nanorods      solvothermal      dye-sensitized solar cell (DSSC)     
Corresponding Authors: Heng WANG   
Just Accepted Date: 15 March 2018   Online First Date: 09 April 2018    Issue Date: 31 August 2018
 Cite this article:   
Xiaoyan HU,Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0758-4
http://journal.hep.com.cn/foe/EN/Y2018/V11/I3/285
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoyan HU
Heng WANG
Fig.1  Schematic diagram of the ZnO/Nb2O5 core/shell nanorod arrays
Fig.2  Top-view (a) and tilted-view SEM images (b) of bare ZnO nanorod arrays. The top-view (c) and tilted-view SEM images (d) of ZnO/Nb2O5 core/shell nanorod arrays obtained in high concentration NbCl5 solution (0.270 g NbCl5)
Fig.3  Top-view SEM images of ZnO/Nb2O5 core/shell nanorod arrays synthesized in low concentration NbCl5 solution (0.135 g NbCl5): (a) low and (b) high magnification. The top-view SEM images of ZnO/Nb2O5 core/shell nanorod arrays synthesized in high concentration NbCl5 solution (0.270 g NbCl5): (c) low and (d) high magnification
Fig.4  (a) TEM image of ZnO/Nb2O5 core/shell nanorod and (b) the corresponding SAED pattern obtained from the circle area in Fig. 4(a)
Fig.5  Optical absorption spectra of ZnO and ZnO/Nb2O5 nanorod arrays
Fig.6  Photocurrent density-voltage curves of DSSCs based on the photoanodes of bare ZnO nanorods, ZnO/Nb2O5(1) core/shell nanorod (0.135 g NbCl5) and ZnO/Nb2O5(2) core/shell nanorod (0.270 g NbCl5)
photoanode Jsc/(mA·cm−2) Voc/mV FF PCE/%
ZnO 4.46 537 0.357 0.856%
ZnO/Nb2O5(1) 5.52 569 0.512 1.609%
ZnO/Nb2O5(2) 5.92 569 0.592 1.995%
Tab.1  Photovoltaic performance of DSSCs based on photoanodes of ZnO nanorods, ZnO/Nb2O5(1) nanorod and ZnO/Nb2O5(2) nanorod under AM1.5 conditions 100 mW·cm−2. The length of three nanorods in the devices are all around 5 µm
1 O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
2 Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585
https://doi.org/10.1038/26936
3 Shang Y, Hao S, Yang C, Chen G. Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials (Basel, Switzerland), 2015, 5(4): 1782–1809
https://doi.org/10.3390/nano5041782 pmid: 28347095
4 Hao S, Shang Y, Li D, Ågren H, Yang C, Chen G. Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale, 2017, 9(20): 6711–6715
https://doi.org/10.1039/C7NR01008G pmid: 28485432
5 Prabakar K, Son M, Kim W Y, Kim H. TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Materials Chemistry and Physics, 2011, 125(1–2): 12–14
https://doi.org/10.1016/j.matchemphys.2010.09.028
6 Chandiran A K, Abdi-Jalebi M, Nazeeruddin M K, Grätzel M. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano, 2014, 8(3): 2261–2268
https://doi.org/10.1021/nn405535j pmid: 24552648
7 Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475–482
https://doi.org/10.1021/ja027945w pmid: 12517161
8 Plank N O V, Howard I, Rao A, Wilson M W B, Ducati C, Mane R S, Bendall J S, Louca R R M, Greenham N C, Miura H, Friend R H, Snaith H J, Welland M E. Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures. Journal of Physical Chemistry C, 2009, 113(43): 18515–18522
https://doi.org/10.1021/jp904919r
9 Barea E, Xu X Q, Gonzalez-Pedro V, Ripollés-Sanchis T, Fabregat-Santiago F, Bisquert J. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy & Environmental Science, 2011, 4(9): 3414–3419
https://doi.org/10.1039/c1ee01193f
10 Ueno S, Fujihara S. Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochimica Acta, 2011, 56(7): 2906–2913
https://doi.org/10.1016/j.electacta.2010.12.084
11 Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chemical Communications (Cambridge, England), 2011, 47(7): 2032–2034
https://doi.org/10.1039/C0CC04993J pmid: 21184009
12 Fiz R, Hernandez-Ramirez F, Fischer T, Lopez-Conesa L, Estrade S, Peiro F, Mathur S. Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures. Journal of Physical Chemistry C, 2013, 117(19): 10086–10094
https://doi.org/10.1021/jp3121066
13 Mäkinen V, Honkala K, Hakkinen H. Atomic layer deposition of aluminum oxide on TiO2 and its impact on N3 dye adsorption from first principles. Journal of Physical Chemistry C, 2011, 115(18): 9250–9259
https://doi.org/10.1021/jp2011827
14 Lin C Y, Lai Y H, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C. Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science, 2011, 4(9): 3448–3455
https://doi.org/10.1039/c0ee00587h
15 Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K. Nanostructured tungsten oxide – properties, synthesis, and applications. Advanced Functional Materials, 2011, 21(12): 2175–2196
https://doi.org/10.1002/adfm.201002477
16 Huang Y T, Cheng R, Zhai P, Lee H, Chang Y H, Feng S P. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells. Electrochimica Acta, 2017, 236: 131–139
https://doi.org/10.1016/j.electacta.2017.03.171
17 Chu L, Liu W, Yu A, Qin Z F, Hu R Y, Shu H Z, Luo Q P, Min Y G, Yang J P, Li X A. Effect of TiO2 modification on urchin-like orthorhombic Nb2O5 nanospheres as photoelectrodes in dye-sensitized solar cells. Solar Energy, 2017, 153: 584–589
https://doi.org/10.1016/j.solener.2017.03.091
18 Le Viet A, Jose R, Reddy M V, Chowdari B V R, Ramakrishna S. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. Journal of Physical Chemistry C, 2010, 114(49): 21795–21800
https://doi.org/10.1021/jp106515k
19 Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chemistry of Materials, 1998, 10(12): 3825–3832
https://doi.org/10.1021/cm980111l
20 Jia Z, Tang Y, Luo L, Li B, Chen Z, Wang J, Zheng H. Room temperature fabrication of single crystal nanotubes of CaSn(OH)6 through sonochemical precipitation. Journal of Colloid and Interface Science, 2009, 334(2): 202–207
https://doi.org/10.1016/j.jcis.2009.02.067 pmid: 19398111
21 Fang X, Li Y, Zhang S, Bai L, Yuan N Y, Ding J N. The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells. Solar Energy, 2014, 105: 14–19
https://doi.org/10.1016/j.solener.2014.03.039
22 Jo Y, Yun Y J, Alam Khan M, Jun Y. Densely packed setose ZnO nanorod arrays for dye sensitized solar cells. Synthetic Metals, 2014, 198: 137–141
https://doi.org/10.1016/j.synthmet.2014.10.013
Related articles from Frontiers Journals
[1] Zhiqian WU,Yue SHEN,Xiaoqiang LI,Qing YANG,Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Front. Optoelectron., 2016, 9(1): 87-92.
[2] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[3] Xiaoyan LI,Pei LIANG,Le WANG,Feihong YU. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
[4] Yu TIAN, Huiquan CHEN, Xiaolong ZHU, Guang ZHENG, Jiangnan DAI. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer[J]. Front Optoelec, 2013, 6(4): 440-447.
[5] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[6] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[7] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[8] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[9] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[10] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[11] Quanyou FENG, Hong WANG, Gang ZHOU, Zhong-Sheng WANG. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye[J]. Front Optoelec Chin, 2011, 4(1): 80-86.
[12] Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 72-79.
[13] Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
[14] Chang-Ryul LEE, Hui-Seon KIM, Nam-Gyu PARK. Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films[J]. Front Optoelec Chin, 2011, 4(1): 59-64.
[15] Hong LIN, Feng HAO, Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed