Detection of small ship targets from an optical remote sensing image
Mingzhu SONG, Hongsong QU, Guixiang ZHANG, Guang JIN
Detection of small ship targets from an optical remote sensing image
Detection of small ships from an optical remote sensing image plays an essential role in military and civilian fields. However, it becomes more difficult if noise dominates. To solve this issue, a method based on a low-level vision model is proposed in this paper. A global channel, high-frequency channel, and low-frequency channel are introduced before applying discrete wavelet transform, and the improved extended contrast sensitivity function is constructed by self-adaptive center-surround contrast energy and a proposed function. The saliency image is achieved by the three-channel process after inverse discrete wavelet transform, whose coefficients are weighted by the improved extended contrast sensitivity function. Experimental results show that the proposed method outperforms all competing methods with higher precision, higher recall, and higher F-score, which are 100.00%, 90.59%, and 97.96%, respectively. Furthermore, our method is robust against noise and has great potential for providing more accurate target detection in engineering applications.
small target / saliency / contrast sensitivity
[1] |
Wang Y Q, MA L, Tian Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery. Acta Automatica Sinica, 2011, 37(9): 1029–1039
|
[2] |
Shi Z, Yu X, Jiang Z, Li B. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4511–4523
CrossRef
Google scholar
|
[3] |
Xu F, Liu J H. Ship detection and extraction using visual saliency and histogram of oriented gradient. Optoelectronics Letters, 2016, 12(6): 473–477
CrossRef
Google scholar
|
[4] |
Hu J, Gao J B, Posner F L, Zheng Y, Tung W W. Target detection within sea clutter: a comparative study by fractal scaling analyses. Fractals-complex Geometry Patterns & Scaling in Nature & Society, 2011, 14(3): 187–204
|
[5] |
Song M Z, Qu H S, Jin G.Weak ship target detection of noisy optical remote sensing image on sea surface. Acta Optica Sinica, 2017, 37(10): 1011004-1–1011004-8
|
[6] |
Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926
Pubmed
|
[7] |
Erdem E, Erdem A. Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, 2013, 13(4): 11
CrossRef
Google scholar
|
[8] |
Pandivalavan M, Karuppiah M. Saliency detection for content aware computer vision applications. International Arab Journal of Information Technology, 2017, 14(4): 528–533
|
[9] |
Kapoor A, Biswas K K, Hanmandlu M. An evolutionary learning based fuzzy theoretic approach for salient object detection. Visual Computer, 2017, 33(5): 665–685
CrossRef
Google scholar
|
[10] |
Zhang J X, Ehinger K A, Wei H K, Zhang K J, Yang J Y. A novel graph-based optimization framework for salient object detection. Pattern Recognition, 2017, 64(C): 39–50
CrossRef
Google scholar
|
[11] |
Murray N, Vanrell M, Otazu X, Parraga C A. Saliency estimation using a non-parametric low-level vision model. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, 2011, 433–440
|
[12] |
Otazu X, Parraga C A, Vanrell M. Toward a unified chromatic induction model. Journal of Vision, 2010, 10(12): 5
CrossRef
Google scholar
|
[13] |
Hou X, Zhang L. Saliency detection: a spectral residual approach. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, 2007, 1–8
|
[14] |
Duan L, Wu C, Miao J, Qing L, Fu Y. Visual saliency detection by spatially weighted dissimilarity. In: Proceedings of IEEE Computer Vision & Pattern Recognition, 2011, 473–480
|
[15] |
Xu F, Liu J H, Zeng D D, Wang X. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency. Optics and Precision Engineering, 2017, 25(5): 1300–1311
CrossRef
Google scholar
|
/
〈 | 〉 |