Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2019, Vol. 12 Issue (1) : 69-87     https://doi.org/10.1007/s12200-017-0743-3
REVIEW ARTICLE
Modulation of orbital angular momentum on the propagation dynamics of light fields
Peng LI(), Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
Download: PDF(8624 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical vortices carrying orbital angular momentum (OAM) have attracted extensive attention in recent decades because of their interesting applications in optical trapping, optical machining, optical communication, quantum information, and optical microscopy. Intriguing effects induced by OAMs, such as angular momentum conversion, spin Hall effect of light (SHEL), and spin–orbital interaction, have also gained increasing interest. In this article, we provide an overview of the modulations of OAMs on the propagation dynamics of scalar and vector fields in free space. First, we introduce the evolution of canonical and noncanonical optical vortices and analyze the modulations by means of local spatial frequency. Second, we review the Pancharatnam–Berry (PB) phases arising from spin–orbital interaction and reveal the control of beam evolution referring to novel behavior such as spin-dependent splitting and polarization singularity conversion. Finally, we discuss the propagation and focusing properties of azimuthally broken vector vortex beams.

Keywords orbital angular momentum      polarization      spin angular momentum      Pancharatnam–Berry (PB) phase      angular diffraction     
Corresponding Authors: Peng LI   
Just Accepted Date: 30 October 2017   Online First Date: 29 November 2017    Issue Date: 29 April 2019
 Cite this article:   
Peng LI,Sheng LIU,Yi ZHANG, et al. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0743-3
http://journal.hep.com.cn/foe/EN/Y2019/V12/I1/69
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng LI
Sheng LIU
Yi ZHANG
Lei HAN
Dongjing WU
Huachao CHENG
Shuxia QI
Xuyue GUO
Jianlin ZHAO
Fig.1  (a)−(d) Intensity and phase (insets) distributions of canonical vortices; (e) the divergence of vortex beams keeping the Gaussian waist or rrms constant. Two kinds of vortex beams are generated by using forked diffraction grating or cylindrical lens, respectively [58]
Fig.2  Evolutions of (a) zeroth-order Bessel beam and LG beams with parameters of (b) l = 0, p = 10 and (c) l = 2, p = 10, respectively
Fig.3  (a) Phase structure of a triangle vortex with l = 34; (b) beam shape at the focal plane; (c) experimental results of optical tweezer [78]
Fig.4  (a) Local spatial frequencies mapping to the focal field; (b) focal filed intensity of AAB with a power-exponent-phase vortex [79]
Fig.5  (a) Side view of propagation dynamic (in y-z plane) of AAB with l = 8 and n = 2; (b)−(e) intensity distributions at different propagation distances of z = 19.52, 20.50, 21.48 and 22.45 cm, respectively [79]
Fig.6  Simulation intensity distributions of vector AAB with polarization order m = 2 and different phase parameters n in the focal plane. I0, IL and IR correspond to the total intensity, left- and right-handed spin components, respectively. The insets represent the phase profiles. The dashed curves denote the local spatial frequencies distributions [84]
Fig.7  Schematic illustration of PB phases generation in the process of polarization transformation. Insert: schematic illustration of polarization transformation on the Poincaré sphere [99]
Fig.8  Distributions of intensity (top row), s3 (second row), polarization orientation (third row) and phase (bottom row) of different states. |H〉 denotes the sate composed by two spin components with OAMs defined by subscripts [113]
Fig.9  Intensity and polarization distributions of the focal fields of the azimuthally polarized beams with vortex phases of l = 1, 2 and 3, respectively. The dotted, dashed and solid lines in the top row depict the zero contours of s1, s2 and s3, respectively; the background and short lines in the bottom row denote the ellipticity and the orientation of polarization ellipse, respectively [114]
Fig.10  Autofocusing of radially polarized AABs without (top) and with (bottom) a single charged vortex phase. (a) and (c) depict the beam intensity patterns at input and output, respectively; (b) and (d) side view of the beam propagation from numerical simulation and measured beam polarizations at output [116]
Fig.11  Spin-dependent separation with the bifurcation of orbital angular momentum. (a) Initial beam with polarization direction marked with red arrowheads; (b) horizontally and vertically polarized components; (c) interference pattern of output beam with a plane wave (top), and the corresponding s3 distribution (bottom); (d) side view of the beam propagation
Fig.12  (a) Schematic illustration of the longitudinal three-foci metasurface lens; each focal point is focused from segmented region with distinct PB phase response; (b) the observed light spots correspond to the three focal points. Adapted from Ref. [127]
Fig.13  Schematic representation of z-dependent polarization distribution and transformation; (b)−(f) experimentally measured intensity distributions of first-order Bessel beam propagating through a vertical polarizer at planes with equal space [133]
Fig.14  Measured transverse intensity and local polarization distributions of the reconstructed second-order BG beam with hybrid polarizations at propagation distances of z = 21, 23.8, 26.6, 29.5, 32.2 cm, respectively. The red and green ellipses denote the RH and LH elliptical polarizations, respectively. The linear obstacle with a diameter of about D = 70 mm is placed at plane z = 16.6 cm [133]
Fig.15  (a) Rotation angles |Dq| versus the topological charges; (b)−(e) Intensity distributions of fan-shaped vortex beams at z = 0 and 25 cm planes. (c) l = -4; (d) l = -20; (e) l =±20. |R〉 and |L〉 correspond to two spin states. The red and blue areas correspond to the positive and negative vortex beams, respectively
Fig.16  (a) Rotation angles |Dq| versus propagation distance z. (b)−(d) Focal intensity distributions of l = 1, 4 and 20 fan-shaped vortex beams with b = p/2, respectively. The incident fan-shaped vortex beams have the same profile as shown in Fig. 15(b)
Fig.17  Measured s3 distributions of fan-shaped pure CV beams with b = p/2 in the planes of z = 25 cm (upper row) and z→∞ (the focal plane of a lens, below row). The red and blue areas correspond to the right- and left-handed spin components, the dashed areas schematically show the incident beams. The polarization orders are m = 1, 2 and 4, respectively
Fig.18  Schematic illustration of the focusing dynamics of a fan-shaped azimuthally polarized beam [149]
Fig.19  Distributions of intensity and s3 in the focal field of azimuthally polarized beams with different rotation symmetries. Insets: the intensity distributions of beams in the pupil plane [149]
Fig.20  Distributions of s3 for fan-shaped beams with angular width of p/2, after propagating 25 cm. (a) m = 2, l = 2; (b) m = 2, l = -1; (c) m = 2, l = 3 [145]
1 JPoynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567
https://doi.org/10.1098/rspa.1909.0060
2 A TO’Neil, IMacVicar, LAllen, M JPadgett. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601
https://doi.org/10.1103/PhysRevLett.88.053601 pmid: 11863722
3 S MBarnett, LAllen, R PCameron, C RGilson, M JPadgett, F CSpeirits, A MYao. On the natures of the spin and orbital parts of optical angular momentum. Journal of Optics, 2016, 18(6): 064004
https://doi.org/10.1088/2040-8978/18/6/064004
4 LAllen, M WBeijersbergen, R JSpreeuw, J PWoerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(11): 8185
pmid: 9906912
5 HHe, M EFriese, N RHeckenberg, HRubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829
https://doi.org/10.1103/PhysRevLett.75.826 pmid: 10060128
6 LAllen, MPadgett, M I VBabiker. The orbital angular momentum of light. Progress in Optics, 1999, 39: 291–372
https://doi.org/10.1016/S0079-6638(08)70391-3
7 MPadgett, LAllen. The Poynting vector in Laguerre-Gaussian laser modes. Optics Communications, 1995, 121(1–3): 36–40
https://doi.org/10.1016/0030-4018(95)00455-H
8 J ECurtis, D GGrier. Structure of optical vortices. Physical Review Letters, 2003, 90(13): 133901
https://doi.org/10.1103/PhysRevLett.90.133901 pmid: 12689289
9 G CBerkhout, M PLavery, JCourtial, M WBeijersbergen, M JPadgett. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601
https://doi.org/10.1103/PhysRevLett.105.153601 pmid: 21230900
10 SFranke-Arnold, LAllen, MPadgett. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
https://doi.org/10.1002/lpor.200810007
11 MOnoda, SMurakami, NNagaosa. Hall effect of light. Physical Review Letters, 2004, 93(8): 083901
https://doi.org/10.1103/PhysRevLett.93.083901 pmid: 15447185
12 K YBliokh, Y PBliokh. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Physical Review Letters, 2006, 96(7): 073903
https://doi.org/10.1103/PhysRevLett.96.073903 pmid: 16606091
13 OHosten, PKwiat. Observation of the spin hall effect of light via weak measurements. Science, 2008, 319(5864): 787–790
https://doi.org/10.1126/science.1152697 pmid: 18187623
14 K YBliokh, DSmirnova, FNori. Quantum spin Hall effect of light. Science, 2015, 348(6242): 1448–1451
https://doi.org/10.1126/science.aaa9519 pmid: 26113717
15 Y CLiu, Y GKe, H LLuo, S CWen. Photonic spin Hall effect in metasurfaces: a brief review. Nanophotonics, 2017, 6(1): 51–70
16 K YBliokh, F JRodríguez-Fortuño, FNori, A VZayats. Spin-orbit interactions of light. Nature Photonics, 2015, 9(12): 796–808
https://doi.org/10.1038/nphoton.2015.201
17 K YBliokh, I VShadrivov, Y SKivshar. Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. Optics Letters, 2009, 34(3): 389–391
https://doi.org/10.1364/OL.34.000389 pmid: 19183668
18 L JKong, X LWang, S MLi, Y NLi, JChen, BGu, H TWang. Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle. Applied Physics Letters, 2012, 100(7): 071109
https://doi.org/10.1063/1.3687186
19 P VKapitanova, PGinzburg, F JRodríguez-Fortuño, D SFilonov, P MVoroshilov, P ABelov, A NPoddubny, Y SKivshar, G AWurtz, A VZayats. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Communications, 2014, 5: 3226
https://doi.org/10.1038/ncomms4226 pmid: 24526135
20 YZhang, PLi, SLiu, LHan, H CCheng, J LZhao. Optimized weak measurement for spatial spin-dependent shifts at Brewster angle. Applied Physics B, Lasers and Optics, 2016, 122(7): 184
https://doi.org/10.1007/s00340-016-6459-z
21 K YBliokh. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Physical Review Letters, 2006, 97(4): 043901
https://doi.org/10.1103/PhysRevLett.97.043901 pmid: 16907574
22 MMerano, NHermosa, J PWoerdman, AAiello. How orbital angular momentum affects beam shifts in optical reflection. Physical Review A, Atomic, Molecular, and Optical Physics, 2010, 82(2): 023817
https://doi.org/10.1103/PhysRevA.82.023817
23 A VDooghin, N DKundikova, V SLiberman, B YZel’dovich. Optical Magnus effect. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(11): 8204–8208
pmid: 9906914
24 S JVan Enk, GNienhuis. Spin and orbital angular momentum of photons. Europhysics Letters, 1994, 25(7): 497–501
https://doi.org/10.1209/0295-5075/25/7/004
25 A MYao, M JPadgett. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
https://doi.org/10.1364/AOP.3.000161
26 LAllen, M JPadgett. The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density. Optics Communications, 2000, 184(1–4): 67–71
https://doi.org/10.1016/S0030-4018(00)00960-3
27 S MBarnett, LAllen. Orbital angular momentum and nonparaxial light beams. Optics Communications, 1994, 110(5–6): 670–678
https://doi.org/10.1016/0030-4018(94)90269-0
28 MBabiker, W LPower, LAllen. Light-induced torque on moving atoms. Physical Review Letters, 1994, 73(9): 1239–1242
https://doi.org/10.1103/PhysRevLett.73.1239 pmid: 10057660
29 N BSimpson, KDholakia, LAllen, M JPadgett. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters, 1997, 22(1): 52–54
https://doi.org/10.1364/OL.22.000052 pmid: 18183100
30 D GGrier. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
https://doi.org/10.1038/nature01935 pmid: 12917694
31 MPadgett, LAllen. Optical tweezers and spanners. Physics World, 1997, 10(9): 35–40
https://doi.org/10.1088/2058-7058/10/9/22
32 R WBowman, M JPadgett. Optical trapping and binding. Reports on Progress in Physics, 2013, 76(2): 026401
https://doi.org/10.1088/0034-4885/76/2/026401 pmid: 23302540
33 NBozinovic, YYue, YRen, MTur, PKristensen, HHuang, A EWillner, SRamachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
https://doi.org/10.1126/science.1237861 pmid: 23812709
34 YZhang, I BDjordjevic, XGao. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications. Optics Letters, 2012, 37(15): 3267–3269
https://doi.org/10.1364/OL.37.003267 pmid: 22859154
35 JLeach, BJack, JRomero, A KJha, A MYao, SFranke-Arnold, D GIreland, R WBoyd, S MBarnett, M JPadgett. Quantum correlations in optical angle-orbital angular momentum variables. Science, 2010, 329(5992): 662–665
https://doi.org/10.1126/science.1190523 pmid: 20689014
36 JWang. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28
https://doi.org/10.1364/PRJ.4.000B14
37 MMalik, MMirhosseini, M P JLavery, JLeach, M JPadgett, R WBoyd. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5: 3115
https://doi.org/10.1038/ncomms4115 pmid: 24445503
38 TSu, R PScott, S SDjordjevic, N KFontaine, D JGeisler, XCai, S J BYoo. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
https://doi.org/10.1364/OE.20.009396 pmid: 22535028
39 YYan, YYue, HHuang, J YYang, M RChitgarha, NAhmed, MTur, S JDolinar, A EWillner. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs. Optics Letters, 2012, 37(17): 3645–3647
https://doi.org/10.1364/OL.37.003645 pmid: 22940977
40 JWang, J YYang, I MFazal, NAhmed, YYan, HHuang, Y XRen, YYue, SDolinar, MTur, A EWillner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
https://doi.org/10.1038/nphoton.2012.138
41 A EWillner, HHuang, YYan, YRen, NAhmed, GXie, CBao, LLi, YCao, ZZhao, JWang, M P JLavery, MTur, SRamachandran, A FMolisch, NAshrafi, SAshrafi. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
https://doi.org/10.1364/AOP.7.000066
42 AMair, AVaziri, GWeihs, AZeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
https://doi.org/10.1038/35085529 pmid: 11460157
43 S SOemrawsingh, XMa, DVoigt, AAiello, E REliel, G W’t Hooft, J PWoerdman. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Physical Review Letters, 2005, 95(24): 240501
https://doi.org/10.1103/PhysRevLett.95.240501 pmid: 16384361
44 EKarimi, LMarrucci, Cde Lisio, ESantamato. Time-division multiplexing of the orbital angular momentum of light. Optics Letters, 2012, 37(2): 127–129
https://doi.org/10.1364/OL.37.000127 pmid: 22854442
45 MMüller, SBounouar, K DJöns, MGlässl, PMichler. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photonics, 2014, 8(3): 224–228
https://doi.org/10.1038/nphoton.2013.377
46 X LWang, X DCai, Z ESu, M CChen, DWu, LLi, N LLiu, C YLu, J WPan. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540): 516–519
https://doi.org/10.1038/nature14246 pmid: 25719668
47 M P JLavery, F CSpeirits, S MBarnett, M JPadgett. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540
https://doi.org/10.1126/science.1239936 pmid: 23908234
48 WLöffler, AAiello, J PWoerdman. Observation of orbital angular momentum sidebands due to optical reflection. Physical Review Letters, 2012, 109(11): 113602
https://doi.org/10.1103/PhysRevLett.109.113602 pmid: 23005627
49 R PChen, ZChen, K HChew, P GLi, ZYu, JDing, SHe. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation. Scientific Reports, 2015, 5(1): 10628
https://doi.org/10.1038/srep10628 pmid: 26024434
50 YPan, X ZGao, Z CRen, X LWang, CTu, YLi, H TWang. Arbitrarily tunable orbital angular momentum of photons. Scientific Reports, 2016, 6(1): 29212
https://doi.org/10.1038/srep29212 pmid: 27378234
51 M WBeijersbergen, LAllen, HVan der Veen, J PWoerdman. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 1993, 96(1-3): 123–132
https://doi.org/10.1016/0030-4018(93)90535-D
52 GIndebetouw. Optical vortices and their propagation. Journal of Modern Optics, 1993, 40(1): 73–87
https://doi.org/10.1080/09500349314550101
53 F SRoux. Dynamical behavior of optical vortices. Journal of the Optical Society of America B, Optical Physics, 1995, 12(7): 1215–1221
https://doi.org/10.1364/JOSAB.12.001215
54 X YZhao, J CZhang, X YPang, G BWan. Properties of a strongly focused Gaussian beam with an off-axis vortex. Optics Communications, 2017, 389: 275–282
https://doi.org/10.1016/j.optcom.2016.12.050
55 DRozas, C TLaw, G ASwartzlander Jr. Propagation dynamics of optical vortices. Journal of the Optical Society of America B, Optical Physics, 1997, 14(11): 3054–3065
https://doi.org/10.1364/JOSAB.14.003054
56 X TGan, J LZhao, SLiu, LFang. Generation and motion control of optical multi-vortex. Chinese Optics Letters, 2009, 7(12): 1142–1145
https://doi.org/10.3788/COL20090712.1142
57 YPeng, X TGan, PJu, Y DWang, J LZhao. Measuring topological charges of optical vortices with multi-singularity using a cylindrical lens. Chinese Physics Letters, 2015, 32(2): 024201
https://doi.org/10.1088/0256-307X/32/2/024201
58 M JPadgett, F MMiatto, M P JLavery, AZeilinger, R WBoyd. Divergence of an orbital-angular-momentum-carrying beam upon propagation. New Journal of Physics, 2015, 17(2): 023011
https://doi.org/10.1088/1367-2630/17/2/023011
59 M APorras, RBorghi, MSantarsiero. Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(1): 177–184
https://doi.org/10.1364/JOSAA.18.000177 pmid: 11151996
60 JMendoza-Hernández, M LArroyo-Carrasco, M DIturbe-Castillo, SChávez-Cerda. Laguerre-Gauss beams versus Bessel beams showdown: peer comparison. Optics Letters, 2015, 40(16): 3739–3742
https://doi.org/10.1364/OL.40.003739 pmid: 26274648
61 ABencheikh, MFromager, K AAmeur. Generation of Laguerre-Gaussian LGp0 beams using binary phase diffractive optical elements. Applied Optics, 2014, 53(21): 4761–4767
https://doi.org/10.1364/AO.53.004761 pmid: 25090215
62 SHaddadi, DLouhibi, AHasnaoui, AHarfouche, KAït-Ameur. Spatial properties of a diffracted high-order radial Laguerre–Gauss LGp0 beam. Laser Physics, 2015, 25(12): 125002
https://doi.org/10.1088/1054-660X/25/12/125002
63 LLi, G DXie, YYan, Y XRen, P CLiao, ZZhao, NAhmed, ZWang, C JBao, A JWillner, SAshrafi, MTur, A EWillner. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams. Journal of the Optical Society of America B, Optical Physics, 2017, 34(1): 1–6
https://doi.org/10.1364/JOSAB.34.000001
64 JHamazaki, YMineta, KOka, RMorita. Direct observation of Gouy phase shift in a propagating optical vortex. Optics Express, 2006, 14(18): 8382–8392
https://doi.org/10.1364/OE.14.008382 pmid: 19529215
65 A MAmaral, E LFalcão-Filho, C Bde Araújo. Shaping optical beams with topological charge. Optics Letters, 2013, 38(9): 1579–1581
https://doi.org/10.1364/OL.38.001579 pmid: 23632558
66 N PHermosa II, C OManaois. Phase structure of helico-conical optical beams. Optics Communications, 2007, 271(1): 178–183
https://doi.org/10.1016/j.optcom.2006.10.004
67 CAlonzo, P JRodrigo, JGlückstad. Helico-conical optical beams: a product of helical and conical phase fronts. Optics Express, 2005, 13(5): 1749–1760
https://doi.org/10.1364/OPEX.13.001749 pmid: 19495054
68 V RDaria, D ZPalima, JGlückstad. Optical twists in phase and amplitude. Optics Express, 2011, 19(2): 476–481
https://doi.org/10.1364/OE.19.000476 pmid: 21263587
69 J BGötte, KO’Holleran, DPreece, FFlossmann, SFranke-Arnold, S MBarnett, M JPadgett. Light beams with fractional orbital angular momentum and their vortex structure. Optics Express, 2008, 16(2): 993–1006
https://doi.org/10.1364/OE.16.000993 pmid: 18542173
70 A MNugrowati, W GStam, J PWoerdman. Position measurement of non-integer OAM beams with structurally invariant propagation. Optics Express, 2012, 20(25): 27429–27441
https://doi.org/10.1364/OE.20.027429 pmid: 23262693
71 SMaji, M MBrundavanam. Controlled noncanonical vortices from higher-order fractional screw dislocations. Optics Letters, 2017, 42(12): 2322–2325
https://doi.org/10.1364/OL.42.002322 pmid: 28614342
72 H TDai, Y JLiu, DLuo, X WSun. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation. Optics Letters, 2011, 36(9): 1617–1619
https://doi.org/10.1364/OL.36.001617 pmid: 21540946
73 XChu. Propagation of an Airy beam with a spiral phase. Optics Letters, 2012, 37(24): 5202–5204
https://doi.org/10.1364/OL.37.005202 pmid: 23258052
74 CRosales-Guzmán, MMazilu, JBaumgartl, VRodríguez-Fajardo, RRamos-García, KDholakia. Collision of propagating vortices embedded within Airy beams. Journal of Optics, 2013, 15(4): 044001
https://doi.org/10.1088/2040-8978/15/4/044001
75 G HKim, H JLee, L UKim, HSuk. Propagation dynamics of optical vortices with anisotropic phase profiles. Journal of the Optical Society of America B, Optical Physics, 2003, 20(2): 351–359
https://doi.org/10.1364/JOSAB.20.000351
76 J ECurtis, D GGrier. Modulated optical vortices. Optics Letters, 2003, 28(11): 872–874
https://doi.org/10.1364/OL.28.000872 pmid: 12816230
77 J ARodrigo, TAlieva, EAbramochkin, ICastro. Shaping of light beams along curves in three dimensions. Optics Express, 2013, 21(18): 20544–20555
https://doi.org/10.1364/OE.21.020544 pmid: 24103927
78 J ARodrigo, TAlieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2015, 2(9): 812–815
https://doi.org/10.1364/OPTICA.2.000812
79 PLi, SLiu, TPeng, GXie, XGan, JZhao. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Optics Express, 2014, 22(7): 7598–7606
https://doi.org/10.1364/OE.22.007598 pmid: 24718134
80 IChremmos, N KEfremidis, D NChristodoulides. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
https://doi.org/10.1364/OL.36.001890 pmid: 21593925
81 D GPapazoglou, N KEfremidis, D NChristodoulides, STzortzakis. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
https://doi.org/10.1364/OL.36.001842 pmid: 21593909
82 YJiang, KHuang, XLu. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices. Optics Express, 2012, 20(17): 18579–18584
https://doi.org/10.1364/OE.20.018579 pmid: 23038496
83 BChen, CChen, XPeng, YPeng, MZhou, DDeng. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Optics Express, 2015, 23(15): 19288–19298
https://doi.org/10.1364/OE.23.019288 pmid: 26367590
84 YZhang, PLi, SLiu, LHan, HCheng, JZhao. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Optics Express, 2016, 24(25): 28409–28418
https://doi.org/10.1364/OE.24.028409 pmid: 27958551
85 FWang, C LZhao, YDong, Y MDong, Y JCai. Generation and tight-focusing properties of cylindrical vector circular Airy beams. Applied Physics B, Lasers and Optics, 2014, 117(3): 905–913
https://doi.org/10.1007/s00340-014-5908-9
86 X LWang, JDing, W JNi, C SGuo, H TWang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 2007, 32(24): 3549–3551
https://doi.org/10.1364/OL.32.003549 pmid: 18087538
87 X LWang, JChen, YLi, JDing, C SGuo, H TWang. Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 2010, 105(25): 253602
https://doi.org/10.1103/PhysRevLett.105.253602 pmid: 21231589
88 SLiu, PLi, TPeng, JZhao. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Optics Express, 2012, 20(19): 21715–21721
https://doi.org/10.1364/OE.20.021715 pmid: 23037290
89 LMarrucci, CManzo, DPaparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
https://doi.org/10.1103/PhysRevLett.96.163905 pmid: 16712234
90 GBiener, ANiv, VKleiner, EHasman. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
https://doi.org/10.1364/OL.27.001875 pmid: 18033387
91 NYu, PGenevet, M AKats, FAieta, J PTetienne, FCapasso, ZGaburro. Light propagation with phase discontinuities: genera-lized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
92 NYu, FCapasso. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
https://doi.org/10.1038/nmat3839 pmid: 24452357
93 LZhang, S TMei, KHuang, C WQiu. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833
https://doi.org/10.1002/adom.201500690
94 N MEstakhri, AAlù. Recent progress in gradient metasurfaces. Journal of the Optical Society of America B, Optical Physics, 2016, 33(2): A21–A30
https://doi.org/10.1364/JOSAB.33.000A21
95 AEpstein, G VEleftheriades. Huygens’ metasurfaces via the equivalence principle: design and applications. Journal of the Optical Society of America B, Optical Physics, 2016, 33(2): A31–A50
https://doi.org/10.1364/JOSAB.33.000A31
96 LMarrucci, EKarimi, SSlussarenko, BPiccirillo, ESantamato, ENagali, FSciarrino. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics, 2011, 13(6): 064001
https://doi.org/10.1088/2040-8978/13/6/064001
97 FCardano, LMarrucci. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778
https://doi.org/10.1038/nphoton.2015.232
98 M VBerry. The adiabatic phase and Pancharatnam phase for polarized light. Journal of Modern Optics, 1987, 34(11): 1401–1407
https://doi.org/10.1080/09500348714551321
99 SLiu, PLi, YZhang, XGan, MWang, JZhao. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Scientific Reports, 2016, 6(1): 20774
https://doi.org/10.1038/srep20774 pmid: 26882995
100 GMilione, H ISztul, D ANolan, R RAlfano. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. Physical Review Letters, 2011, 107(5): 053601
https://doi.org/10.1103/PhysRevLett.107.053601 pmid: 21867067
101 X LWang, YLi, JChen, C SGuo, JDing, H TWang. A new type of vector fields with hybrid states of polarization. Optics Express, 2010, 18(10): 10786–10795
https://doi.org/10.1364/OE.18.010786 pmid: 20588932
102 X NYi, Y CLiu, X HLing, X XZhou, Y GKe, H LLuo, S CWen, D YFan. Hybrid-order Poincaré sphere. Physical Review A, Atomic, molecular, and optical physics, 2015, 91: 023801
https://doi.org/10.1103/PhysRevA.91.023801
103 Z CRen, L JKong, S MLi, S XQian, YLi, CTu, H TWang. Generalized Poincaré sphere. Optics Express, 2015, 23(20): 26586–26595
https://doi.org/10.1364/OE.23.026586 pmid: 26480171
104 YGorodetski, GBiener, ANiv, VKleiner, EHasman. Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. Optics Letters, 2005, 30(17): 2245–2247
https://doi.org/10.1364/OL.30.002245 pmid: 16190432
105 ANiv, GBiener, VKleiner, EHasman. Rotating vectorial vortices produced by space-variant subwavelength gratings. Optics Letters, 2005, 30(21): 2933–2935
https://doi.org/10.1364/OL.30.002933 pmid: 16279473
106 GBiener, YGorodetski, ANiv, VKleiner, EHasman. Manipulation of polarization-dependent multivortices with quasi-periodic subwavelength structures. Optics Letters, 2006, 31(11): 1594–1596
https://doi.org/10.1364/OL.31.001594 pmid: 16688231
107 NShitrit, IYulevich, EMaguid, DOzeri, DVeksler, VKleiner, EHasman. Spin-optical metamaterial route to spin-controlled photonics. Science, 2013, 340(6133): 724–726
https://doi.org/10.1126/science.1234892 pmid: 23661756
108 XYin, ZYe, JRho, YWang, XZhang. Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405–1407
https://doi.org/10.1126/science.1231758 pmid: 23520105
109 SSlussarenko, AAlberucci, C PJisha, BPiccirillo, ESantamato, GAssanto, LMarrucci. Guiding light via geometric phases. Nature Photonics, 2016, 10(9): 571–575
https://doi.org/10.1038/nphoton.2016.138
110 G MPhilip, VKumar, GMilione, N KViswanathan. Manifestation of the Gouy phase in vector-vortex beams. Optics Letters, 2012, 37(13): 2667–2669
https://doi.org/10.1364/OL.37.002667 pmid: 22743489
111 ANiv, GBiener, VKleiner, EHasman. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220
https://doi.org/10.1364/OE.14.004208 pmid: 19516574
112 W XShu, Y GKe, Y CLiu, X HLing, H LLuo, X BYin. Radial spin Hall effect of light. Physical Review A, Atomic, molecular, and optical physics, 2016, 93(1): 013839
113 PLi, YZhang, SLiu, CMa, LHan, HCheng, JZhao. Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41(10): 2205–2208
https://doi.org/10.1364/OL.41.002205 pmid: 27176963
114 WZhang, SLiu, PLi, XJiao, JZhao. Controlling the polarization singularities of the focused azimuthally polarized beams. Optics Express, 2013, 21(1): 974–983
https://doi.org/10.1364/OE.21.000974 pmid: 23388991
115 S MBaumann, D MKalb, L HMacMillan, E JGalvez. Propagation dynamics of optical vortices due to Gouy phase. Optics Express, 2009, 17(12): 9818–9827
https://doi.org/10.1364/OE.17.009818 pmid: 19506631
116 SLiu, MWang, PLi, PZhang, JZhao. Abrupt polarization transition of vector autofocusing Airy beams. Optics Letters, 2013, 38(14): 2416–2418
https://doi.org/10.1364/OL.38.002416 pmid: 23939066
117 ZBomzon, ANiv, GBiener, VKleiner, EHasman. Nondiffracting periodically space-variant polarization beams with subwavelength gratings. Applied Physics Letters, 2002, 80(20): 3685–3687
https://doi.org/10.1063/1.1480477
118 ZBomzon, GBiener, VKleiner, EHasman. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
https://doi.org/10.1364/OL.27.001141 pmid: 18026387
119 X HLing, X XZhou, X NYi, W XShu, Y CLiu, S ZChen, H LLuo, S CWen, D YFan. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light, Science & Applications, 2015, 4(5): e290
https://doi.org/10.1038/lsa.2015.63
120 Y GKe, Y CLiu, Y LHe, J XZhou, H LLuo, S CWen. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Applied Physics Letters, 2015, 107(4): 041107
https://doi.org/10.1063/1.4927479
121 YGorodetski, GBiener, ANiv, VKleiner, EHasman. Optical properties of polarization-dependent geometric phase elements with partially polarized light. Optics Communications, 2006, 266(2): 365–375
https://doi.org/10.1016/j.optcom.2006.04.044
122 Y GKe, Y CLiu, J XZhou, Y YLiu, H LLuo, S CWen. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens. Applied Physics Letters, 2016, 108(10): 101102
https://doi.org/10.1063/1.4943403
123 EHasman, VKleiner, GBiener, ANiv. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330
https://doi.org/10.1063/1.1539300
124 X JNi, SIshii, A VKildishev, V MShalaev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72
https://doi.org/10.1038/lsa.2013.28
125 KGao, H HCheng, A KBhowmik, P JBos. Thin-film Pancharatnam lens with low f-number and high quality. Optics Express, 2015, 23(20): 26086–26094
https://doi.org/10.1364/OE.23.026086 pmid: 26480123
126 XDing, FMonticone, KZhang, LZhang, DGao, S NBurokur, Ade Lustrac, QWu, C WQiu, AAlù. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200
https://doi.org/10.1002/adma.201405047 pmid: 25545285
127 X ZChen, MChen, M QMehmood, D DWen, F YYue, C WQiu, SZhang. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Matericals, 2015, 3(9): 1201–1206
https://doi.org/10.1002/adom.201500110
128 XLi, T HLan, C HTien, MGu. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nature Communications, 2012, 3: 998
https://doi.org/10.1038/ncomms2006 pmid: 22893122
129 GZheng, HMühlenbernd, MKenney, GLi, TZentgraf, SZhang. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
https://doi.org/10.1038/nnano.2015.2 pmid: 25705870
130 FCardano, EKarimi, LMarrucci, Cde Lisio, ESantamato. Generation and dynamics of optical beams with polarization singularities. Optics Express, 2013, 21(7): 8815–8820
https://doi.org/10.1364/OE.21.008815 pmid: 23571971
131 IMoreno, J ADavis, M MSánchez-López, KBadham, D MCottrell. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Optics Letters, 2015, 40(23): 5451–5454
https://doi.org/10.1364/OL.40.005451 pmid: 26625023
132 J ADavis, IMoreno, KBadham, M MSánchez-López, D MCottrell. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Optics Letters, 2016, 41(10): 2270–2273
https://doi.org/10.1364/OL.41.002270 pmid: 27176980
133 PLi, YZhang, SLiu, HCheng, LHan, DWu, JZhao. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. Optics Express, 2017, 25(5): 5821–5831
https://doi.org/10.1364/OE.25.005821 pmid: 28380840
134 X ZGao, YPan, S MLi, DWang, Y NLi, C HTu, H TWang. Vector optical fields broken in the spatial frequency domain. Physical Review A, Atomic, molecular, and optical physics, 2016, 93(3): 033834
135 J ADavis, J BBentley. Azimuthal prism effect with partially blocked vortex-producing lenses. Optics Letters, 2005, 30(23): 3204–3206
https://doi.org/10.1364/OL.30.003204 pmid: 16342721
136 SVyas, YKozawa, SSato. Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(5): 837–843
https://doi.org/10.1364/JOSAA.28.000837 pmid: 21532695
137 SVyas, MNiwa, YKozawa, SSato. Diffractive properties of obstructed vector Laguerre-Gaussian beam under tight focusing condition. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(7): 1387–1394
https://doi.org/10.1364/JOSAA.28.001387 pmid: 21734737
138 X LWang, KLou, JChen, BGu, Y NLi, H TWang. Unveiling locally linearly polarized vector fields with broken axial symmetry. Physical Review A, Atomic, molecular, and optical physics, 2011, 83(6): 063813
139 XJiao, SLiu, QWang, XGan, PLi, JZhao. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Optics Letters, 2012, 37(6): 1041–1043
https://doi.org/10.1364/OL.37.001041 pmid: 22446217
140 G FWu, FWang, Y JCai. Generation and self-healing of a radially polarized Bessel-Gauss beam. Physical Review A, Atomic, molecular, and optical physics, 2014, 89(4): 043807
141 SFranke-Arnold, S MBarnett, EYao, JLeach, JCourtial, MPadgett. Uncertainty principle for angular position and angular momentum. New Journal of Physics, 2004, 6: 103
https://doi.org/10.1088/1367-2630/6/1/103
142 EYao, SFranke-Arnold, JCourtial, SBarnett, MPadgett. Fourier relationship between angular position and optical orbital angular momentum. Optics Express, 2006, 14(20): 9071–9076
https://doi.org/10.1364/OE.14.009071 pmid: 19529287
143 BJack, M JPadgett, SFranke-Arnold. Angular diffraction. New Journal of Physics, 2008, 10(10): 103013
https://doi.org/10.1088/1367-2630/10/10/103013
144 PLi, SLiu, GXie, TPeng, JZhao. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams. Optics Express, 2015, 23(6): 7131–7139
https://doi.org/10.1364/OE.23.007131 pmid: 25837058
145 YZhang, PLi, SLiu, JZhao. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Optics Letters, 2015, 40(19): 4444–4447
https://doi.org/10.1364/OL.40.004444 pmid: 26421552
146 Y JCai, XLü. Propagation of Bessel and Bessel–Gaussian beams through an unapertured or apertured misaligned paraxial optical systems. Optics Communications, 2007, 274(1): 1–7
https://doi.org/10.1016/j.optcom.2007.01.058
147 X LLiu, X FPeng, LLiu, G FWu, C LZhao, FWang, Y JCai. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110(18): 181104
https://doi.org/10.1063/1.4982786
148 X HLing, X NYi, X XZhou, Y CLiu, W XShu, H LLuo, S CWen. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Applied Physics Letters, 2014, 105(15): 151101
https://doi.org/10.1063/1.4898190
149 PLi, SLiu, YZhang, G FXie, J LZhao. Experimental realization of focal field engineering of the azimuthally polarized beams modulated by multi-azimuthal masks. Journal of the Optical Society of America B, Optical Physics, 2015, 32(9): 1867–1872
https://doi.org/10.1364/JOSAB.32.001867
Related articles from Frontiers Journals
[1] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[2] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[3] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[4] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[5] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[6] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[7] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[8] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[9] Ning ZHANG,Kenan CICEK,Jiangbo ZHU,Shimao LI,Huanlu LI,Marc SOREL,Xinlun CAI,Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
[10] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[11] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[12] Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Front Optoelec, 2013, 6(4): 429-434.
[13] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[14] Bin WEI, Zhengmao WU, Tao DENG, Guangqiong XIA. Nonlinear dynamics of 1550 nm VCSELs subject to polarization-preserved optical feedback and orthogonal optical injection[J]. Front Optoelec, 2013, 6(3): 243-250.
[15] Thomas G. BROWN, Amber M. BECKLEY. Stress engineering and the applications of inhomogeneously polarized optical fields[J]. Front Optoelec, 2013, 6(1): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed