Modulation of orbital angular momentum on the propagation dynamics of light fields

Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO

PDF(8624 KB)
PDF(8624 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (1) : 69-87. DOI: 10.1007/s12200-017-0743-3
REVIEW ARTICLE
REVIEW ARTICLE

Modulation of orbital angular momentum on the propagation dynamics of light fields

Author information +
History +

Abstract

Optical vortices carrying orbital angular momentum (OAM) have attracted extensive attention in recent decades because of their interesting applications in optical trapping, optical machining, optical communication, quantum information, and optical microscopy. Intriguing effects induced by OAMs, such as angular momentum conversion, spin Hall effect of light (SHEL), and spin–orbital interaction, have also gained increasing interest. In this article, we provide an overview of the modulations of OAMs on the propagation dynamics of scalar and vector fields in free space. First, we introduce the evolution of canonical and noncanonical optical vortices and analyze the modulations by means of local spatial frequency. Second, we review the Pancharatnam–Berry (PB) phases arising from spin–orbital interaction and reveal the control of beam evolution referring to novel behavior such as spin-dependent splitting and polarization singularity conversion. Finally, we discuss the propagation and focusing properties of azimuthally broken vector vortex beams.

Keywords

orbital angular momentum / polarization / spin angular momentum / Pancharatnam–Berry (PB) phase / angular diffraction

Cite this article

Download citation ▾
Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields. Front. Optoelectron., 2019, 12(1): 69‒87 https://doi.org/10.1007/s12200-017-0743-3

References

[1]
Poynting J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567
CrossRef Google scholar
[2]
O’Neil A T, MacVicar I, Allen L, Padgett M J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601
CrossRef Pubmed Google scholar
[3]
Barnett S M, Allen L, Cameron R P, Gilson C R, Padgett M J, Speirits F C, Yao A M. On the natures of the spin and orbital parts of optical angular momentum. Journal of Optics, 2016, 18(6): 064004
CrossRef Google scholar
[4]
Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(11): 8185
Pubmed
[5]
He H, Friese M E, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829
CrossRef Pubmed Google scholar
[6]
Allen L, Padgett M, Babiker M I V. The orbital angular momentum of light. Progress in Optics, 1999, 39: 291–372
CrossRef Google scholar
[7]
Padgett M, Allen L. The Poynting vector in Laguerre-Gaussian laser modes. Optics Communications, 1995, 121(1–3): 36–40
CrossRef Google scholar
[8]
Curtis J E, Grier D G. Structure of optical vortices. Physical Review Letters, 2003, 90(13): 133901
CrossRef Pubmed Google scholar
[9]
Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601
CrossRef Pubmed Google scholar
[10]
Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
CrossRef Google scholar
[11]
Onoda M, Murakami S, Nagaosa N. Hall effect of light. Physical Review Letters, 2004, 93(8): 083901
CrossRef Pubmed Google scholar
[12]
Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Physical Review Letters, 2006, 96(7): 073903
CrossRef Pubmed Google scholar
[13]
Hosten O, Kwiat P. Observation of the spin hall effect of light via weak measurements. Science, 2008, 319(5864): 787–790
CrossRef Pubmed Google scholar
[14]
Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light. Science, 2015, 348(6242): 1448–1451
CrossRef Pubmed Google scholar
[15]
Liu Y C, Ke Y G, Luo H L, Wen S C. Photonic spin Hall effect in metasurfaces: a brief review. Nanophotonics, 2017, 6(1): 51–70
[16]
Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V. Spin-orbit interactions of light. Nature Photonics, 2015, 9(12): 796–808
CrossRef Google scholar
[17]
Bliokh K Y, Shadrivov I V, Kivshar Y S. Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. Optics Letters, 2009, 34(3): 389–391
CrossRef Pubmed Google scholar
[18]
Kong L J, Wang X L, Li S M, Li Y N, Chen J, Gu B, Wang H T. Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle. Applied Physics Letters, 2012, 100(7): 071109
CrossRef Google scholar
[19]
Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J, Filonov D S, Voroshilov P M, Belov P A, Poddubny A N, Kivshar Y S, Wurtz G A, Zayats A V. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Communications, 2014, 5: 3226
CrossRef Pubmed Google scholar
[20]
Zhang Y, Li P, Liu S, Han L, Cheng H C, Zhao J L. Optimized weak measurement for spatial spin-dependent shifts at Brewster angle. Applied Physics B, Lasers and Optics, 2016, 122(7): 184
CrossRef Google scholar
[21]
Bliokh K Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Physical Review Letters, 2006, 97(4): 043901
CrossRef Pubmed Google scholar
[22]
Merano M, Hermosa N, Woerdman J P, Aiello A. How orbital angular momentum affects beam shifts in optical reflection. Physical Review A, Atomic, Molecular, and Optical Physics, 2010, 82(2): 023817
CrossRef Google scholar
[23]
Dooghin A V, Kundikova N D, Liberman V S, Zel’dovich B Y. Optical Magnus effect. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(11): 8204–8208
Pubmed
[24]
Van Enk S J, Nienhuis G. Spin and orbital angular momentum of photons. Europhysics Letters, 1994, 25(7): 497–501
CrossRef Google scholar
[25]
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
CrossRef Google scholar
[26]
Allen L, Padgett M J. The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density. Optics Communications, 2000, 184(1–4): 67–71
CrossRef Google scholar
[27]
Barnett S M, Allen L. Orbital angular momentum and nonparaxial light beams. Optics Communications, 1994, 110(5–6): 670–678
CrossRef Google scholar
[28]
Babiker M, Power W L, Allen L. Light-induced torque on moving atoms. Physical Review Letters, 1994, 73(9): 1239–1242
CrossRef Pubmed Google scholar
[29]
Simpson N B, Dholakia K, Allen L, Padgett M J. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters, 1997, 22(1): 52–54
CrossRef Pubmed Google scholar
[30]
Grier D G. A revolution in optical manipulation. Nature, 2003, 424(6950): 810–816
CrossRef Pubmed Google scholar
[31]
Padgett M, Allen L. Optical tweezers and spanners. Physics World, 1997, 10(9): 35–40
CrossRef Google scholar
[32]
Bowman R W, Padgett M J. Optical trapping and binding. Reports on Progress in Physics, 2013, 76(2): 026401
CrossRef Pubmed Google scholar
[33]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef Pubmed Google scholar
[34]
Zhang Y, Djordjevic I B, Gao X. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications. Optics Letters, 2012, 37(15): 3267–3269
CrossRef Pubmed Google scholar
[35]
Leach J, Jack B, Romero J, Jha A K, Yao A M, Franke-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett M J. Quantum correlations in optical angle-orbital angular momentum variables. Science, 2010, 329(5992): 662–665
CrossRef Pubmed Google scholar
[36]
Wang J. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28
CrossRef Google scholar
[37]
Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J, Boyd R W. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5: 3115
CrossRef Pubmed Google scholar
[38]
Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
CrossRef Pubmed Google scholar
[39]
Yan Y, Yue Y, Huang H, Yang J Y, Chitgarha M R, Ahmed N, Tur M, Dolinar S J, Willner A E. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs. Optics Letters, 2012, 37(17): 3645–3647
CrossRef Pubmed Google scholar
[40]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[41]
Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
CrossRef Google scholar
[42]
Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
CrossRef Pubmed Google scholar
[43]
Oemrawsingh S S, Ma X, Voigt D, Aiello A, Eliel E R, ’t Hooft G W, Woerdman J P. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Physical Review Letters, 2005, 95(24): 240501
CrossRef Pubmed Google scholar
[44]
Karimi E, Marrucci L, de Lisio C, Santamato E. Time-division multiplexing of the orbital angular momentum of light. Optics Letters, 2012, 37(2): 127–129
CrossRef Pubmed Google scholar
[45]
Müller M, Bounouar S, Jöns K D, Glässl M, Michler P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photonics, 2014, 8(3): 224–228
CrossRef Google scholar
[46]
Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540): 516–519
CrossRef Pubmed Google scholar
[47]
Lavery M P J, Speirits F C, Barnett S M, Padgett M J. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540
CrossRef Pubmed Google scholar
[48]
Löffler W, Aiello A, Woerdman J P. Observation of orbital angular momentum sidebands due to optical reflection. Physical Review Letters, 2012, 109(11): 113602
CrossRef Pubmed Google scholar
[49]
Chen R P, Chen Z, Chew K H, Li P G, Yu Z, Ding J, He S. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation. Scientific Reports, 2015, 5(1): 10628
CrossRef Pubmed Google scholar
[50]
Pan Y, Gao X Z, Ren Z C, Wang X L, Tu C, Li Y, Wang H T. Arbitrarily tunable orbital angular momentum of photons. Scientific Reports, 2016, 6(1): 29212
CrossRef Pubmed Google scholar
[51]
Beijersbergen M W, Allen L, Van der Veen H, Woerdman J P. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 1993, 96(1-3): 123–132
CrossRef Google scholar
[52]
Indebetouw G. Optical vortices and their propagation. Journal of Modern Optics, 1993, 40(1): 73–87
CrossRef Google scholar
[53]
Roux F S. Dynamical behavior of optical vortices. Journal of the Optical Society of America B, Optical Physics, 1995, 12(7): 1215–1221
CrossRef Google scholar
[54]
Zhao X Y, Zhang J C, Pang X Y, Wan G B. Properties of a strongly focused Gaussian beam with an off-axis vortex. Optics Communications, 2017, 389: 275–282
CrossRef Google scholar
[55]
Rozas D, Law C T, Swartzlander G A Jr. Propagation dynamics of optical vortices. Journal of the Optical Society of America B, Optical Physics, 1997, 14(11): 3054–3065
CrossRef Google scholar
[56]
Gan X T, Zhao J L, Liu S, Fang L. Generation and motion control of optical multi-vortex. Chinese Optics Letters, 2009, 7(12): 1142–1145
CrossRef Google scholar
[57]
Peng Y, Gan X T, Ju P, Wang Y D, Zhao J L. Measuring topological charges of optical vortices with multi-singularity using a cylindrical lens. Chinese Physics Letters, 2015, 32(2): 024201
CrossRef Google scholar
[58]
Padgett M J, Miatto F M, Lavery M P J, Zeilinger A, Boyd R W. Divergence of an orbital-angular-momentum-carrying beam upon propagation. New Journal of Physics, 2015, 17(2): 023011
CrossRef Google scholar
[59]
Porras M A, Borghi R, Santarsiero M. Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(1): 177–184
CrossRef Pubmed Google scholar
[60]
Mendoza-Hernández J, Arroyo-Carrasco M L, Iturbe-Castillo M D, Chávez-Cerda S. Laguerre-Gauss beams versus Bessel beams showdown: peer comparison. Optics Letters, 2015, 40(16): 3739–3742
CrossRef Pubmed Google scholar
[61]
Bencheikh A, Fromager M, Ameur K A. Generation of Laguerre-Gaussian LGp0 beams using binary phase diffractive optical elements. Applied Optics, 2014, 53(21): 4761–4767
CrossRef Pubmed Google scholar
[62]
Haddadi S, Louhibi D, Hasnaoui A, Harfouche A, Aït-Ameur K. Spatial properties of a diffracted high-order radial Laguerre–Gauss LGp0 beam. Laser Physics, 2015, 25(12): 125002
CrossRef Google scholar
[63]
Li L, Xie G D, Yan Y, Ren Y X, Liao P C, Zhao Z, Ahmed N, Wang Z, Bao C J, Willner A J, Ashrafi S, Tur M, Willner A E. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams. Journal of the Optical Society of America B, Optical Physics, 2017, 34(1): 1–6
CrossRef Google scholar
[64]
Hamazaki J, Mineta Y, Oka K, Morita R. Direct observation of Gouy phase shift in a propagating optical vortex. Optics Express, 2006, 14(18): 8382–8392
CrossRef Pubmed Google scholar
[65]
Amaral A M, Falcão-Filho E L, de Araújo C B. Shaping optical beams with topological charge. Optics Letters, 2013, 38(9): 1579–1581
CrossRef Pubmed Google scholar
[66]
Hermosa N P II, Manaois C O. Phase structure of helico-conical optical beams. Optics Communications, 2007, 271(1): 178–183
CrossRef Google scholar
[67]
Alonzo C, Rodrigo P J, Glückstad J. Helico-conical optical beams: a product of helical and conical phase fronts. Optics Express, 2005, 13(5): 1749–1760
CrossRef Pubmed Google scholar
[68]
Daria V R, Palima D Z, Glückstad J. Optical twists in phase and amplitude. Optics Express, 2011, 19(2): 476–481
CrossRef Pubmed Google scholar
[69]
Götte J B, O’Holleran K, Preece D, Flossmann F, Franke-Arnold S, Barnett S M, Padgett M J. Light beams with fractional orbital angular momentum and their vortex structure. Optics Express, 2008, 16(2): 993–1006
CrossRef Pubmed Google scholar
[70]
Nugrowati A M, Stam W G, Woerdman J P. Position measurement of non-integer OAM beams with structurally invariant propagation. Optics Express, 2012, 20(25): 27429–27441
CrossRef Pubmed Google scholar
[71]
Maji S, Brundavanam M M. Controlled noncanonical vortices from higher-order fractional screw dislocations. Optics Letters, 2017, 42(12): 2322–2325
CrossRef Pubmed Google scholar
[72]
Dai H T, Liu Y J, Luo D, Sun X W. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation. Optics Letters, 2011, 36(9): 1617–1619
CrossRef Pubmed Google scholar
[73]
Chu X. Propagation of an Airy beam with a spiral phase. Optics Letters, 2012, 37(24): 5202–5204
CrossRef Pubmed Google scholar
[74]
Rosales-Guzmán C, Mazilu M, Baumgartl J, Rodríguez-Fajardo V, Ramos-García R, Dholakia K. Collision of propagating vortices embedded within Airy beams. Journal of Optics, 2013, 15(4): 044001
CrossRef Google scholar
[75]
Kim G H, Lee H J, Kim L U, Suk H. Propagation dynamics of optical vortices with anisotropic phase profiles. Journal of the Optical Society of America B, Optical Physics, 2003, 20(2): 351–359
CrossRef Google scholar
[76]
Curtis J E, Grier D G. Modulated optical vortices. Optics Letters, 2003, 28(11): 872–874
CrossRef Pubmed Google scholar
[77]
Rodrigo J A, Alieva T, Abramochkin E, Castro I. Shaping of light beams along curves in three dimensions. Optics Express, 2013, 21(18): 20544–20555
CrossRef Pubmed Google scholar
[78]
Rodrigo J A, Alieva T. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2015, 2(9): 812–815
CrossRef Google scholar
[79]
Li P, Liu S, Peng T, Xie G, Gan X, Zhao J. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Optics Express, 2014, 22(7): 7598–7606
CrossRef Pubmed Google scholar
[80]
Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
CrossRef Pubmed Google scholar
[81]
Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
CrossRef Pubmed Google scholar
[82]
Jiang Y, Huang K, Lu X. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices. Optics Express, 2012, 20(17): 18579–18584
CrossRef Pubmed Google scholar
[83]
Chen B, Chen C, Peng X, Peng Y, Zhou M, Deng D. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Optics Express, 2015, 23(15): 19288–19298
CrossRef Pubmed Google scholar
[84]
Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Optics Express, 2016, 24(25): 28409–28418
CrossRef Pubmed Google scholar
[85]
Wang F, Zhao C L, Dong Y, Dong Y M, Cai Y J. Generation and tight-focusing properties of cylindrical vector circular Airy beams. Applied Physics B, Lasers and Optics, 2014, 117(3): 905–913
CrossRef Google scholar
[86]
Wang X L, Ding J, Ni W J, Guo C S, Wang H T. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 2007, 32(24): 3549–3551
CrossRef Pubmed Google scholar
[87]
Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T. Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 2010, 105(25): 253602
CrossRef Pubmed Google scholar
[88]
Liu S, Li P, Peng T, Zhao J. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Optics Express, 2012, 20(19): 21715–21721
CrossRef Pubmed Google scholar
[89]
Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
CrossRef Pubmed Google scholar
[90]
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef Pubmed Google scholar
[91]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: genera-lized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[92]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
CrossRef Pubmed Google scholar
[93]
Zhang L, Mei S T, Huang K, Qiu C W. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833
CrossRef Google scholar
[94]
Estakhri N M, Alù A. Recent progress in gradient metasurfaces. Journal of the Optical Society of America B, Optical Physics, 2016, 33(2): A21–A30
CrossRef Google scholar
[95]
Epstein A, Eleftheriades G V. Huygens’ metasurfaces via the equivalence principle: design and applications. Journal of the Optical Society of America B, Optical Physics, 2016, 33(2): A31–A50
CrossRef Google scholar
[96]
Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics, 2011, 13(6): 064001
CrossRef Google scholar
[97]
Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778
CrossRef Google scholar
[98]
Berry M V. The adiabatic phase and Pancharatnam phase for polarized light. Journal of Modern Optics, 1987, 34(11): 1401–1407
CrossRef Google scholar
[99]
Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Scientific Reports, 2016, 6(1): 20774
CrossRef Pubmed Google scholar
[100]
Milione G, Sztul H I, Nolan D A, Alfano R R. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. Physical Review Letters, 2011, 107(5): 053601
CrossRef Pubmed Google scholar
[101]
Wang X L, Li Y, Chen J, Guo C S, Ding J, Wang H T. A new type of vector fields with hybrid states of polarization. Optics Express, 2010, 18(10): 10786–10795
CrossRef Pubmed Google scholar
[102]
Yi X N, Liu Y C, Ling X H, Zhou X X, Ke Y G, Luo H L, Wen S C, Fan D Y. Hybrid-order Poincaré sphere. Physical Review A, Atomic, molecular, and optical physics, 2015, 91: 023801
CrossRef Google scholar
[103]
Ren Z C, Kong L J, Li S M, Qian S X, Li Y, Tu C, Wang H T. Generalized Poincaré sphere. Optics Express, 2015, 23(20): 26586–26595
CrossRef Pubmed Google scholar
[104]
Gorodetski Y, Biener G, Niv A, Kleiner V, Hasman E. Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. Optics Letters, 2005, 30(17): 2245–2247
CrossRef Pubmed Google scholar
[105]
Niv A, Biener G, Kleiner V, Hasman E. Rotating vectorial vortices produced by space-variant subwavelength gratings. Optics Letters, 2005, 30(21): 2933–2935
CrossRef Pubmed Google scholar
[106]
Biener G, Gorodetski Y, Niv A, Kleiner V, Hasman E. Manipulation of polarization-dependent multivortices with quasi-periodic subwavelength structures. Optics Letters, 2006, 31(11): 1594–1596
CrossRef Pubmed Google scholar
[107]
Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E. Spin-optical metamaterial route to spin-controlled photonics. Science, 2013, 340(6133): 724–726
CrossRef Pubmed Google scholar
[108]
Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405–1407
CrossRef Pubmed Google scholar
[109]
Slussarenko S, Alberucci A, Jisha C P, Piccirillo B, Santamato E, Assanto G, Marrucci L. Guiding light via geometric phases. Nature Photonics, 2016, 10(9): 571–575
CrossRef Google scholar
[110]
Philip G M, Kumar V, Milione G, Viswanathan N K. Manifestation of the Gouy phase in vector-vortex beams. Optics Letters, 2012, 37(13): 2667–2669
CrossRef Pubmed Google scholar
[111]
Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220
CrossRef Pubmed Google scholar
[112]
Shu W X, Ke Y G, Liu Y C, Ling X H, Luo H L, Yin X B. Radial spin Hall effect of light. Physical Review A, Atomic, molecular, and optical physics, 2016, 93(1): 013839
[113]
Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, Zhao J. Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41(10): 2205–2208
CrossRef Pubmed Google scholar
[114]
Zhang W, Liu S, Li P, Jiao X, Zhao J. Controlling the polarization singularities of the focused azimuthally polarized beams. Optics Express, 2013, 21(1): 974–983
CrossRef Pubmed Google scholar
[115]
Baumann S M, Kalb D M, MacMillan L H, Galvez E J. Propagation dynamics of optical vortices due to Gouy phase. Optics Express, 2009, 17(12): 9818–9827
CrossRef Pubmed Google scholar
[116]
Liu S, Wang M, Li P, Zhang P, Zhao J. Abrupt polarization transition of vector autofocusing Airy beams. Optics Letters, 2013, 38(14): 2416–2418
CrossRef Pubmed Google scholar
[117]
Bomzon Z, Niv A, Biener G, Kleiner V, Hasman E. Nondiffracting periodically space-variant polarization beams with subwavelength gratings. Applied Physics Letters, 2002, 80(20): 3685–3687
CrossRef Google scholar
[118]
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
CrossRef Pubmed Google scholar
[119]
Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light, Science & Applications, 2015, 4(5): e290
CrossRef Google scholar
[120]
Ke Y G, Liu Y C, He Y L, Zhou J X, Luo H L, Wen S C. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Applied Physics Letters, 2015, 107(4): 041107
CrossRef Google scholar
[121]
Gorodetski Y, Biener G, Niv A, Kleiner V, Hasman E. Optical properties of polarization-dependent geometric phase elements with partially polarized light. Optics Communications, 2006, 266(2): 365–375
CrossRef Google scholar
[122]
Ke Y G, Liu Y C, Zhou J X, Liu Y Y, Luo H L, Wen S C. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens. Applied Physics Letters, 2016, 108(10): 101102
CrossRef Google scholar
[123]
Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330
CrossRef Google scholar
[124]
Ni X J, Ishii S, Kildishev A V, Shalaev V M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72
CrossRef Google scholar
[125]
Gao K, Cheng H H, Bhowmik A K, Bos P J. Thin-film Pancharatnam lens with low f-number and high quality. Optics Express, 2015, 23(20): 26086–26094
CrossRef Pubmed Google scholar
[126]
Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, de Lustrac A, Wu Q, Qiu C W, Alù A. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200
CrossRef Pubmed Google scholar
[127]
Chen X Z, Chen M, Mehmood M Q, Wen D D, Yue F Y, Qiu C W, Zhang S. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Matericals, 2015, 3(9): 1201–1206
CrossRef Google scholar
[128]
Li X, Lan T H, Tien C H, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nature Communications, 2012, 3: 998
CrossRef Pubmed Google scholar
[129]
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
CrossRef Pubmed Google scholar
[130]
Cardano F, Karimi E, Marrucci L, de Lisio C, Santamato E. Generation and dynamics of optical beams with polarization singularities. Optics Express, 2013, 21(7): 8815–8820
CrossRef Pubmed Google scholar
[131]
Moreno I, Davis J A, Sánchez-López M M, Badham K, Cottrell D M. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Optics Letters, 2015, 40(23): 5451–5454
CrossRef Pubmed Google scholar
[132]
Davis J A, Moreno I, Badham K, Sánchez-López M M, Cottrell D M. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Optics Letters, 2016, 41(10): 2270–2273
CrossRef Pubmed Google scholar
[133]
Li P, Zhang Y, Liu S, Cheng H, Han L, Wu D, Zhao J. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. Optics Express, 2017, 25(5): 5821–5831
CrossRef Pubmed Google scholar
[134]
Gao X Z, Pan Y, Li S M, Wang D, Li Y N, Tu C H, Wang H T. Vector optical fields broken in the spatial frequency domain. Physical Review A, Atomic, molecular, and optical physics, 2016, 93(3): 033834
[135]
Davis J A, Bentley J B. Azimuthal prism effect with partially blocked vortex-producing lenses. Optics Letters, 2005, 30(23): 3204–3206
CrossRef Pubmed Google scholar
[136]
Vyas S, Kozawa Y, Sato S. Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(5): 837–843
CrossRef Pubmed Google scholar
[137]
Vyas S, Niwa M, Kozawa Y, Sato S. Diffractive properties of obstructed vector Laguerre-Gaussian beam under tight focusing condition. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(7): 1387–1394
CrossRef Pubmed Google scholar
[138]
Wang X L, Lou K, Chen J, Gu B, Li Y N, Wang H T. Unveiling locally linearly polarized vector fields with broken axial symmetry. Physical Review A, Atomic, molecular, and optical physics, 2011, 83(6): 063813
[139]
Jiao X, Liu S, Wang Q, Gan X, Li P, Zhao J. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Optics Letters, 2012, 37(6): 1041–1043
CrossRef Pubmed Google scholar
[140]
Wu G F, Wang F, Cai Y J. Generation and self-healing of a radially polarized Bessel-Gauss beam. Physical Review A, Atomic, molecular, and optical physics, 2014, 89(4): 043807
[141]
Franke-Arnold S, Barnett S M, Yao E, Leach J, Courtial J, Padgett M. Uncertainty principle for angular position and angular momentum. New Journal of Physics, 2004, 6: 103
CrossRef Google scholar
[142]
Yao E, Franke-Arnold S, Courtial J, Barnett S, Padgett M. Fourier relationship between angular position and optical orbital angular momentum. Optics Express, 2006, 14(20): 9071–9076
CrossRef Pubmed Google scholar
[143]
Jack B, Padgett M J, Franke-Arnold S. Angular diffraction. New Journal of Physics, 2008, 10(10): 103013
CrossRef Google scholar
[144]
Li P, Liu S, Xie G, Peng T, Zhao J. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams. Optics Express, 2015, 23(6): 7131–7139
CrossRef Pubmed Google scholar
[145]
Zhang Y, Li P, Liu S, Zhao J. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Optics Letters, 2015, 40(19): 4444–4447
CrossRef Pubmed Google scholar
[146]
Cai Y J, Lü X. Propagation of Bessel and Bessel–Gaussian beams through an unapertured or apertured misaligned paraxial optical systems. Optics Communications, 2007, 274(1): 1–7
CrossRef Google scholar
[147]
Liu X L, Peng X F, Liu L, Wu G F, Zhao C L, Wang F, Cai Y J. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Applied Physics Letters, 2017, 110(18): 181104
CrossRef Google scholar
[148]
Ling X H, Yi X N, Zhou X X, Liu Y C, Shu W X, Luo H L, Wen S C. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Applied Physics Letters, 2014, 105(15): 151101
CrossRef Google scholar
[149]
Li P, Liu S, Zhang Y, Xie G F, Zhao J L. Experimental realization of focal field engineering of the azimuthally polarized beams modulated by multi-azimuthal masks. Journal of the Optical Society of America B, Optical Physics, 2015, 32(9): 1867–1872
CrossRef Google scholar

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11634010, 11404262, 61675168, U1630125 and 61377035); Fundamental Research Funds for the Central Universities (No. 3102015ZY057); and Innovation Foundation for Doctor Dissertation of North-western Polytechnical University (No. CX201629).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(8624 KB)

Accesses

Citations

Detail

Sections
Recommended

/