Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 280-286     DOI: 10.1007/s12200-017-0739-z
RESEARCH ARTICLE |
Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging
X. Luís DEÁN-BEN1, Ali ÖZBEK1, Daniel RAZANSKY1,2()
1. Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
2. School of Medicine and School of Bioengineering, Technical University of Munich, Munich, Germany
Download: PDF(216 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hand-held implementations of recently introduced real-time volumetric tomography approaches represent a promising path toward clinical translation of the optoacoustic technology. To this end, rapid acquisition of optoacoustic image data with spherical matrix arrays has attained exquisite visualizations of three-dimensional vascular morphology and function deep in human tissues. Nevertheless, significant reconstruction inaccuracies may arise from speed of sound (SoS) mismatches between the imaged tissue and the coupling medium used to propagate the generated optoacoustic responses toward the ultrasound sensing elements. Herein, we analyze the effects of SoS variations in three-dimensional hand-held tomographic acquisition geometries. An efficient graphics processing unit (GPU)-based reconstruction framework is further proposed to mitigate the SoS-related image quality degradation without compromising the high-frame-rate volumetric imaging performance of the method, essential for real-time visualization during hand-held scans.

Keywords speed of sound (SoS)      graphics processing unit (GPU)     
Corresponding Authors: Daniel RAZANSKY   
Just Accepted Date: 22 August 2017   Online First Date: 14 September 2017    Issue Date: 26 September 2017
 Cite this article:   
X. Luís DEÁN-BEN,Ali ÖZBEK,Daniel RAZANSKY. Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging[J]. Front. Optoelectron., 2017, 10(3): 280-286.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0739-z
http://journal.hep.com.cn/foe/EN/Y2017/V10/I3/280
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
X. Luís DEÁN-BEN
Ali ÖZBEK
Daniel RAZANSKY
Fig.1  Propagation of an optoacoustic wave generated at an absorbing point within the imaged tissue to the detection point located in the coupling medium. Acoustic refraction takes place at the interface due to a difference in the speed of sound (SoS)
Fig.2  Simulated optoacoustic reconstructions for point absorbers embedded at different depths within the imaged tissue. (a) Location of the five absorbers within the tissue and the detection geometry (blue dots). The values of the speed of sound (SoS) in tissue ct and water cw are indicated. Scalebar – 10 mm. Reconstructed images of the absorbers when assuming a uniform SoS of 1500 and 1590 m/s in the entire medium are shown in (b) and (c), respectively. The region of interest is labeled by a dashed rectangle in (a). Reconstructions obtained by considering the actual SoS distribution with 0 and 10 iterations in Eq. (3) are shown in (d) and (e), respectively
Fig.3  Experimental imaging results for an agar-glycerine phantom with a higher SoS than water containing 200 mm absorbing microspheres. (a)−(c) Reconstructions obtained by considering a uniform SoS of 1505, 1540 and 1575 m/s, respectively. (d) Reconstructions obtained by considering SoS values of 1505 and 1650 m/s in water and the phantom material, respectively. Scalebar – 2 mm. (e) Comparison of the computational time when considering homogeneous (blue triangles) or heterogeneous (red squares) SoS distributions as a function of the number of reconstructed voxels
Fig.4  3D optoacoustic images acquired from a human palm. (a)−(c) Maximum intensity projections along the depth direction for imaging depths ranging from 0 to 4.5 mm. (d)−(f) Maximum intensity projections along the depth direction for imaging depths ranging from 4.5 to 9 mm. First column – reconstructions assuming a uniform SoS of 1510 m/s. Second column – reconstructions assuming a uniform SoS of 1535 m/s. Third column – reconstructed image assuming different SoS in water (1510 m/s) and tissue (1575 m/s). Scalebar – 4 mm
1 Dean-Ben X L, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light, Science & Applications, 2014,3(1): e137
2 Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Real-time handheld multispectral optoacoustic imaging. Optics Letters, 2013, 38(9): 1404–1406 
doi: 10.1364/OL.38.001404 pmid: 23632499
3 Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics, 2015, 9(4): 219–227 
doi: 10.1038/nphoton.2015.29
4 Wang L V, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 2016, 13(8): 627–638 
doi: 10.1038/nmeth.3925 pmid: 27467726
5 Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton N C, Sardella T C, Claussen J, Poeppel T D, Bachmann H S, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Science Translational Medicine, 2015, 7(317): 317ra199  
doi: 10.1126/scitranslmed.aad1278 pmid: 26659573
6 Deán-Ben X L, Merčep E, Razansky D. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues. Applied Physics Letters, 2017, 110(20): 203703 
doi: 10.1063/1.4983462
7 Kim C, Erpelding T N, Jankovic L, Pashley M D, Wang L V. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomedical Optics Express, 2010, 1(1): 278–284  
doi: 10.1364/BOE.1.000278 pmid: 21258465
8 Fronheiser M P, Ermilov S A, Brecht H P, Conjusteau A, Su R, Mehta K, Oraevsky A A. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. Journal of Biomedical Optics, 2010, 15(2): 021305  
doi: 10.1117/1.3370336 pmid: 20459227
9 Piras D, Grijsen C, Schütte P, Steenbergen W, Manohar S. Photoacoustic needle: minimally invasive guidance to biopsy. Journal of Biomedical Optics, 2013, 18(7): 070502 
doi: 10.1117/1.JBO.18.7.070502 pmid: 23817760
10 Deán-Ben X L, Razansky D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics, 2016, 4(4): 133–140  
doi: 10.1016/j.pacs.2016.10.001 pmid: 28066714
11 Neuschmelting V, Burton N C, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher M F. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics, 2016, 4(1): 1–10  
doi: 10.1016/j.pacs.2015.12.001 pmid: 27069872
12 Mercep E, Dean Ben X L, Razansky D. Combined pulse-echo ultrasound and multispectral optoacoustic tomography with a multi-segment detector array. IEEE Transactions on Medical Imaging, 2017, doi: 10.1109/TMI.2017.2706200
doi: 10.1109/TMI.2017.2706200 pmid: 28541198
13 Deán-Ben X L, Ntziachristos V, Razansky D. Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers. Journal of Biomedical Optics, 2012, 17(11): 110504  
doi: 10.1117/1.JBO.17.11.110504 pmid: 23096956
14 Deán-Ben X L, Ma R, Rosenthal A, Ntziachristos V, Razansky D. Weighted model-based optoacoustic reconstruction in acoustic scattering media. Physics in Medicine and Biology, 2013, 58(16): 5555–5566  
doi: 1088/0031-9155/58/16/5555 pmid: 23892587
15 Treeby B E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. Journal of Biomedical Optics, 2013, 18(3): 036008  
doi: 10.1117/1.JBO.18.3.036008 pmid: 23503580
16 Huang C, Nie L, Schoonover R W, Wang L V, Anastasio M A. Photoacoustic computed tomography correcting for heterogeneity and attenuation. Journal of Biomedical Optics, 2012, 17(6): 061211  
doi: 10.1117/1.JBO.17.6.061211 pmid: 22734741
17 Deán-Ben X L, Razansky D, Ntziachristos V. The effects of acoustic attenuation in optoacoustic signals. Physics in Medicine and Biology, 2011, 56(18): 6129–6148  
doi: 10.1088/0031-9155/56/18/021 pmid: 21873768
18 Modgil D, Anastasio M A, La Rivière P J. Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation. Journal of Biomedical Optics, 2010, 15(2): 021308  
doi: 10.1117/1.3333550 pmid: 20459230
19 Deán-Ben X L, Ntziachristos V, Razansky D. Effects of small variations of speed of sound in optoacoustic tomographic imaging. Medical Physics, 2014, 41(7): 073301  
doi: 10.1118/1.4875691 pmid: 24989414
20 Wurzinger G, Nuster R, Paltauf G. Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection. Journal of Biomedical Optics, 2016, 21(8): 086010  
doi: 10.1117/1.JBO.21.8.086010 pmid: 27548772
21 Haltmeier M, Nguyen L V. Analysis of iterative methods in photoacoustic tomography with variable sound speed. SIAM Journal on Imaging Sciences, 2017, 10(2): 751–781  
doi: 10.1137/16M1104822
22 Li L, Zhu L R, Ma C, Lin L, Yao J J, Wang L D, Maslov K, Zhang R Y, Chen W Y, Shi J H, Wang L V. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nature Biomedical Engineering, 2017, 1(5): Art. No. 0071
23 Treeby B E, Cox B T. k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 2010, 15(2): 021314  
doi: 10.1117/1.3360308 pmid: 20459236
24 Huang C, Wang K, Nie L, Wang L V, Anastasio M A. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Transactions on Medical Imaging, 2013, 32(6): 1097–1110 
doi: 10.1109/TMI.2013.2254496 pmid: 23529196
25 Szabo T L. Diagnostic ultrasound imaging inside out. Burlington, MA: Elsevier Academic Press, 2004, p. xxii, 549 p
26 Jose J, Willemink R G, Resink S, Piras D, van Hespen J C, Slump C H, Steenbergen W, van Leeuwen T G, Manohar S. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Optics Express, 2011, 19(3): 2093–2104  
doi: 10.1364/OE.19.002093 pmid: 21369026
27 Xia J, Huang C, Maslov K, Anastasio M A, Wang L V. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Optics Letters, 2013, 38(16): 3140–3143  
doi: 10.1364/OL.38.003140 pmid: 24104670
28 Treeby B E, Varslot T K, Zhang E Z, Laufer J G, Beard P C. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. Journal of Biomedical Optics, 2011, 16(9): 090501  
pmid: 21950905
29 Mandal S, Nasonova E, Deán-Ben X L, Razansky D. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging. Photoacoustics, 2014, 2(3): 128–136  
doi: 10.1016/j.pacs.2014.09.002 pmid: 25431756
30 Deán-Ben  X L, Fehm T F, Gostic M, Razansky D. Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast. Journal of Biophotonics, 2016, 9(3): 253–259  
pmid: 25966021
31 Deán-Ben X L, Ozbek A, Razansky D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Transactions on Medical Imaging, 2013, 32(11): 2050–2055  
doi: 10.1109/TMI.2013.2272079 pmid: 23846468
32 Xu M, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography. Physical Review E:  Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(1 Pt 2): 016706
33 Deán-Ben X L, Razansky D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Optics Express, 2013, 21(23): 28062–28071  
doi: 10.1364/OE.21.028062 pmid: 24514320
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed