Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 323-328     DOI: 10.1007/s12200-017-0736-2
RESEARCH ARTICLE |
Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography
Vasily A. MATKIVSKY(), Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
Download: PDF(234 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method for determining and correcting distortions in spectral-domain optical coherence tomography images caused by medium dispersion was developed. The method is based on analysis of the phase distribution of the interference signal recorded by an optical coherence tomography device using an iterative approach to find and compensate for the effect of a medium’s chromatic dispersion on point-spread function broadening in optical coherence tomography. This enables compensation of the impact of medium dispersion to an accuracy of a fraction of a radian (units of percent) while avoiding additional measurements and solution of the optimization problem. The robustness of the method was demonstrated experimentally using model and biological objects.

Keywords optical coherence tomography (OCT)      dispersion      image resolution restoration     
Corresponding Authors: Vasily A. MATKIVSKY   
Just Accepted Date: 17 August 2017   Online First Date: 08 September 2017    Issue Date: 26 September 2017
 Cite this article:   
Vasily A. MATKIVSKY,Alexander A. MOISEEV,Sergey Yu. KSENOFONTOV, et al. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0736-2
http://journal.hep.com.cn/foe/EN/Y2017/V10/I3/323
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Vasily A. MATKIVSKY
Alexander A. MOISEEV
Sergey Yu. KSENOFONTOV
Irina V. KASATKINA
Grigory V. GELIKONOV
Dmitry V. SHABANOV
Pavel A. SHILYAGIN
Valentine M. GELIKONOV
Fig.1  Experimental verification of the possibility of dispersive profile reconstruction. (a) Initial OCT image of human finger skin; (b) reconstructed nonlinear profile of medium dispersion spectrum (solid curve) and its numerical model based on Sellmeier’s equation [28] (dashed curve)
Fig.2  Human volunteer retina OCT image. (a) Initial image in the case of dispersion-induced distortion; (b) restored image; (c) and (d) magnified fragments of (a) and (b) images, respectively
1 Drexler W, Fujimoto J G. Optical Coherence Tomography Technology and Applications. Berlin: Springer, 2008, 1357
2 Puliafito C A, Hee M R, Schuman J S, Fujimoto J G. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376
3 Gupta V, Gupta A, Dogra M R. Atlas of Optical Coherence Tomography of Macular Diseases.  Boca Raton: Taylor & Francis, 2004
4 Zaitsev V Y, Vitkin I A, Matveev L A, Gelikonov V M, Matveyev A L, Gelikonov G V. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210–225
doi: 10.1007/s11141-014-9505-x
5 Loduca A L, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849–855
doi: 10.1016/j.ajo.2010.06.034 pmid: 20951975
6 Chiu S J, Li X T, Nicholas P, Toth C A, Izatt J A, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413–19428
doi: 10.1364/OE.18.019413 pmid: 20940837
7 Fercher A F, Hitzenberger C K, Sticker M, Zawadzki R, Karamata B, Lasser T. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1–6): 67–74
doi: 10.1016/S0030-4018(02)01137-9
8 Lippok N, Coen S, Nielsen P, Vanholsbeeck F. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20(21): 23398–23413
doi: 10.1364/OE.20.023398 pmid: 23188304
9 Choi W, Baumann B, Swanson E A, Fujimoto J G. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357–25368
doi: 10.1364/OE.20.025357 pmid: 23187353
10 Wu X, Gao W. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169–177
doi: 10.1364/JOSAB.34.000169
11 Lychagov V V, Ryabukho V P. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45(6): 556–560
doi: 10.1070/QE2015v045n06ABEH015616
12 Yu X, Liu X, Chen S, Luo Y, Wang X, Liu L. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399–26413
doi: 10.1364/OE.23.026399 pmid: 26480153
13 Xu D, Huang Y, Kang J U. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography. In: Proceedings of SPIE. 2015, 93301B
14 Bian H, Gao W. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT.  In: Proceedings of SPIE. 2014, 92360X
15 Pan L, Wang X, Li Z, Zhang X, Bu Y, Nan N, Chen Y, Wang X, Dai F. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345–10354
doi: 10.1364/OE.25.010345
16 Wang B, Jiang Z, Hu Y, Wang Z.A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553L
17 Okano M, Okamoto R, Tanaka A, Ishida S, Nishizawa N, Takeuchi S. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845
doi: 10.1103/PhysRevA.88.043845
18 Shirai T. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation. Journal of Optics, 2015, 17(4): 045605 
doi: 10.1088/2040-8978/17/4/045605
19 Photiou C, Bousi E, Zouvani I, Pitris C. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528–2535
doi: 10.1364/BOE.8.002528
20 Photiou C., Pitris C.Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532W
21 Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6
22 Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152–155
doi: 10.1016/j.optcom.2006.07.050
23 Matkivsky V A, Moiseev A A, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601
doi: 10.1088/1612-2011/13/3/035601
24 Leitgeb R A, Wojtkowski M. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177–207
25 Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900
doi: 10.1134/S0030400X09060174
26 Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173
doi: 10.1117/12.231361 pmid: 23014682
27 Welge W A, Barton J K. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396
doi: 10.1371/journal.pone.0139396 pmid: 26418811
28 Schott Optical glass datasheet (Electronic document) https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets-july-2015-us.pdf
29 Batovrin V K, Garmash I A, Gelikonov V M, Gelikonov G V, Lyubarskiǐ A V, Plyavenek A G, Safin S A, Semenov A T, Shidlovskiǐ V R, Shramenko M V, Yakubovich S D. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109–114
doi: 10.1070/QE1996v026n02ABEH000603
Related articles from Frontiers Journals
[1] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[2] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[3] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[4] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[5] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[6] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[7] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[8] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[9] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[10] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[11] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[12] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[13] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[14] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
[15] Wei CHEN, Shiyu LI, Peixiang LU, Dongxiang WANG, Wenyong LUO. Dispersion compensation optical fiber modules for 40 Gbps WDM communication systems[J]. Front Optoelec Chin, 2010, 3(4): 333-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed