Detection of photonic orbital angular momentum with micro- and nano-optical structures

Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN

PDF(2237 KB)
PDF(2237 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (1) : 88-96. DOI: 10.1007/s12200-017-0730-8
REVIEW ARTICLE
REVIEW ARTICLE

Detection of photonic orbital angular momentum with micro- and nano-optical structures

Author information +
History +

Abstract

Light with an optical orbital angular momentum (OAM) has attracted an increasing amount of interest and has found its way into many disciplines ranging from optical trapping, edge-enhanced microscopy, high-speed optical communication, and secure quantum teleportation to spin-orbital coupling. In a variety of OAM-involved applications, it is crucial to discern different OAM states with high fidelity. In the current paper, we review the latest research progress on OAM detection with micro- and nano-optical structures that are based on plasmonics, photonic integrated circuits (PICs), and liquid crystal devices. These innovative OAM sorters are promising to ultimately achieve the miniaturization and integration of high-fidelity OAM detectors and inspire numerous applications that harness the intriguing properties of the twisted light.

Keywords

orbital angular momentum (OAM) / optical vortices / singular optics / spatial light modulator / surface plasmon polariton (SPP) / holography / photonic integrated circuit (PIC)

Cite this article

Download citation ▾
Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures. Front. Optoelectron., 2019, 12(1): 88‒96 https://doi.org/10.1007/s12200-017-0730-8

References

[1]
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
CrossRef Google scholar
[2]
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
CrossRef Google scholar
[3]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[4]
Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
CrossRef Google scholar
[5]
Courtial J, Padgett M J. Limit to the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle. ‎. Optics Communications, 2000, 173(1–6): 269–274
CrossRef Google scholar
[6]
Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser & Photonics Reviews, 2011, 5(1): 81–101
CrossRef Google scholar
[7]
Dholakia K, Simpson N, Padgett M, Allen L. Second-harmonic generation and the orbital angular momentum of light. Physical Review A, 1996, 54(5): R3742–R3745
CrossRef Google scholar
[8]
Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
CrossRef Google scholar
[9]
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef Google scholar
[10]
Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25): 257901
CrossRef Google scholar
[11]
Shalaev V M, Kawata S. Nanophotonics with Surface Plasmons. New York: Elsevier, 2007
[12]
Liu A, Rui G, Ren X, Zhan Q, Guo G, Guo G. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Optics Express, 2012, 20(22): 24151–24159
CrossRef Google scholar
[13]
Gorodetski Y, Shitrit N, Bretner I, Kleiner V, Hasman E. Observation of optical spin symmetry breaking in nanoapertures. Nano Letters, 2009, 9(8): 3016–3019
CrossRef Google scholar
[14]
Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Letters, 2010, 10(2): 529–536
CrossRef Google scholar
[15]
Cho S W, Park J, Lee S Y, Kim H, Lee B. Coupling of spin and angular momentum of light in plasmonic vortex. Optics Express, 2012, 20(9): 10083–10094
CrossRef Google scholar
[16]
Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
CrossRef Google scholar
[17]
Yang S, Chen W, Nelson R L, Zhan Q. Miniature circular polarization analyzer with spiral plasmonic lens. Optics Letters, 2009, 34(20): 3047–3049
CrossRef Google scholar
[18]
Chen W, Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Optics Letters, 2009, 34(6): 722–724
CrossRef Google scholar
[19]
Liu A P, Xiong X, Ren X F, Cai Y J, Rui G H, Zhan Q W, Guo G C, Guo G P. Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Scientific Reports, 2013, 3(1): 2402
CrossRef Google scholar
[20]
Rui G, Ma Y, Gu B, Zhan Q, Cui Y. Multi-channel orbital angular momentum detection with metahologram. Optics Letters, 2016, 41(18): 4379–4382
CrossRef Google scholar
[21]
Genevet P, Lin J, Kats M A, Capasso F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nature Communications, 2012, 3: 1278
CrossRef Google scholar
[22]
Kerber R M, Fitzgerald J M, Reiter D E, Oh S S, Hess O. Reading the orbital angular momentum of light using plasmonic nanoantennas. ACS Photonics, 2017, 4(4): 891–896
CrossRef Google scholar
[23]
Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618
CrossRef Google scholar
[24]
Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fédéli J M, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express, 2006, 14(22): 10838–10843
CrossRef Google scholar
[25]
Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
CrossRef Google scholar
[26]
Rui G, Gu B, Cui Y, Zhan Q. Detection of orbital angular momentum using a photonic integrated circuit. Scientific Reports, 2016, 6(1): 28262
CrossRef Google scholar
[27]
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef Google scholar
[28]
Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
CrossRef Google scholar
[29]
Yang Y, Huang Y, Guo W, Lu Q, Donegan J F. Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators. Optics Express, 2010, 18(12): 13057
CrossRef Google scholar
[30]
Fontaine N K, Doerr C R, Buhl L.Efficient multiplexing and demultiplexing of freespace orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference & Exposition. 2012, OTu1I.2
[31]
Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R. Generating and identifying optical orbital angular momentum with silicon photonic circuits. Optics Letters, 2014, 39(20): 5977–5980
CrossRef Google scholar
[32]
Liu A, Zou C, Ren X, Wang Q, Guo G. On-chip generation and control of the vortex beam. Applied Physics Letters, 2016, 108(18): 181103
CrossRef Google scholar
[33]
Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J B. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
CrossRef Google scholar
[34]
Han W, Yang Y, Cheng W, Zhan Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 2013, 21(18): 20692–20706
CrossRef Google scholar
[35]
Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601
CrossRef Google scholar
[36]
Malik M, Mirhosseini M, Lavery M P, Leach J, Padgett M J, Boyd R W. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5: 3115
CrossRef Google scholar
[37]
O’Sullivan M N, Mirhosseini M, Malik M, Boyd R W. Near-perfect sorting of orbital angular momentum and angular position states of light. Optics Express, 2012, 20(22): 24444–24449
CrossRef Google scholar
[38]
Mirhosseini M, Malik M, Shi Z, Boyd R W. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4: 2781
CrossRef Google scholar
[39]
Wan C, Chen J, Zhan Q. Compact and high-resolution optical orbital angular momentum sorter. APL Photonics, 2017, 2(3): 031302
CrossRef Google scholar
[40]
Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics. Optics Letters, 2017, 42(3): 551–554
CrossRef Google scholar
[41]
Dai K, Gao C, Zhong L, Na Q, Wang Q. Measuring OAM states of light beams with gradually-changing-period gratings. Optics Letters, 2015, 40(4): 562–565
CrossRef Google scholar
[42]
Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Scientific Reports, 2017, 7: 40781
CrossRef Google scholar
[43]
D’Ambrosio V, Nagali E, Walborn S P, Aolita L, Slussarenko S, Marrucci L, Sciarrino F. Complete experimental toolbox for alignment-free quantum communication. Nature Communications, 2012, 3: 961
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2237 KB)

Accesses

Citations

Detail

Sections
Recommended

/