Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 103-110     DOI: 10.1007/s12200-017-0716-6
Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells
Yuqin LIAO1,2,3, Xianyuan JIANG2,3, Wenjia ZHOU2, Zhifang SHI2,3, Binghan LI2,3, Qixi MI2, Zhijun NING2()
1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(401 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electron-transporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High short-circuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/FAPb0.5Sn0.5I3 interface. This finding provides an alternative strategy to simplify the manufacture of single-junction or tandem PSCs.

Keywords solar cell      perovskite      hole-transporting layer (HTL)      interface engineering     
Corresponding Authors: Zhijun NING   
Just Accepted Date: 26 April 2017   Online First Date: 09 June 2017    Issue Date: 05 July 2017
 Cite this article:   
Yuqin LIAO,Xianyuan JIANG,Wenjia ZHOU, et al. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
E-mail this article
E-mail Alert
Articles by authors
Yuqin LIAO
Xianyuan JIANG
Wenjia ZHOU
Zhifang SHI
Binghan LI
Qixi MI
Zhijun NING
band gap from absorption/eV1.4901.3101.270
band gap from PL/eV1.5071.3551.2861.2821.400
Tab.1  Band gaps for Pb-Sn perovskite alloys calculated from absorption edge and PL peak, respectively
Fig.1  Optical and structural characterization of FAPb1−xSnxI3. (a) Absorption spectra; (b) photoluminescence spectra; and (c) X-ray diffraction (XRD) patterns of FAPb1−xSnxI3 films with different Sn ratios; “#” indicates the diffraction peaks of ITO
Fig.2  Photovoltaic structure and performance of HTL-free devices based on FAPb0.5Sn0.5I3 films. (a) Schematics of the device architecture; (b) SEM cross-sectional image; (c) energy band diagram; (d) J-V characteristics; (e) EQE spectrum and integrated Jsc of the highest performance of HTL-free PSC
Fig.3  Characterizations of FAPb0.5Sn0.5I3 films on different substrates. (a) XRD patterns (“#” indicates the diffraction peaks of ITO); (b) PL spectra; and (c) SEM images of the perovskite film on ITO and NiOx
Fig.4  Morphology of perovskite films with varying molar concentration of SnF2. SEM images of FAPb0.5Sn0.5I3 films on ITO with (a) 0 mol%, (b) 5 mol% , (c) 10 mol%, (d) 15 mol%, and (e) 20 mol% of SnF2; and (f) calculation of the average grain size for perovskites
1 Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407
doi: 10.1039/C3EE43161D
2 Park N G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015, 18(2): 65–72
doi: 10.1016/j.mattod.2014.07.007
3 Ishihara T. Optical properties of PbI-based perovskite structures. Journal of Luminescence, 1994, 60–61: 269–274
doi: 10.1016/0022-2313(94)90145-7
4 Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Letters, 2013, 13(9): 4505–4510
doi: 10.1021/nl4024287 pmid: 23947387
5 Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589
doi: 10.1002/adma.201305172 pmid: 24757716
6 Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192
doi: 10.1021/ja412583t pmid: 24654882
7 Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
doi: 10.1126/science.1243982 pmid: 24136964
8 Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347
doi: 10.1126/science.1243167 pmid: 24136965
9 Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
doi: 10.1126/science.aaa5760 pmid: 25636799
10 Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514
doi: 10.1038/nphoton.2014.134
11 Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
doi: 10.1021/jz4020162
12 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398
doi: 10.1038/nature12509 pmid: 24025775
13 Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
doi: 10.1021/ja809598r pmid: 19366264
14 Solar cell efficiency table, ; accessed: April 2016
15 Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237
doi: 10.1126/science.aaa9272 pmid: 25999372
16 Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
doi: 10.1063/1.1736034
17 Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice C R, Cimaroli A J, Guan L, Ellingson R J, Zhu K, Zhao X, Xiong R G, Yan Y. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2: 17018
doi: 10.1038/nenergy.2017.18
18 Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
doi: 10.1126/science.1228604 pmid: 23042296
19 Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014, 24(1): 151–157
doi: 10.1002/adfm.201302090
20 Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2013, 8(2): 133–138
doi: 10.1038/nphoton.2013.342
21 Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
doi: 10.1126/science.1254050 pmid: 25082698
22 Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732
doi: 10.1002/adma.201301327 pmid: 23775589
23 Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
doi: 10.1126/science.aaa0472 pmid: 25635093
24 Heo J H, Han H J, Kim D, Ahn T K, Im S H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602–1608
doi: 10.1039/C5EE00120J
25 Wang J T W, Wang Z, Pathak S, Zhang W, deQuilettes D W, Wisnivesky-Rocca-Rivarola F, Huang J, Nayak P K, Patel J B, Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9(9): 2892–2901
doi: 10.1039/C6EE01969B
26 Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793
doi: 10.1021/ja5125594 pmid: 25594109
27 Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H. The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9103–9107
doi: 10.1039/C4TA07030E
28 Luo Q, Ma H, Zhang Y, Yin X, Yao Z, Wang N, Li J, Fan S, Jiang K, Lin H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(15): 5569–5577
doi: 10.1039/C6TA01715K
29 Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830
doi: 10.1039/C4RA09519G
30 Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y, Zhao X. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Advanced Functional Materials, 2016, 26(27): 4866–4873
doi: 10.1002/adfm.201504564
31 Ye S, Rao H, Yan W, Li Y, Sun W, Peng H, Liu Z, Bian Z, Li Y, Huang C. A strategy to simplify the preparation process of perovskite solar cells by Co-deposition of a hole-conductor and a perovskite layer. Advanced Materials, 2016, 28(43): 9648–9654
doi: 10.1002/adma.201603850 pmid: 27622991
32 Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano, 2014, 8(10): 10161–10167
doi: 10.1021/nn5029828 pmid: 25259736
33 Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
doi: 10.1126/science.1254763 pmid: 25035487
34 Tsai K W, Chueh C C, Williams S T, Wen T C, Jen A K Y. High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9128–9132
doi: 10.1039/C5TA01343G
35 Li Y, Ye S, Sun W, Yan W, Li Y, Bian Z, Liu Z, Wang S, Huang C. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(36): 18389–18394
doi: 10.1039/C5TA05989E
36 Bao X, Zhu Q, Qiu M, Yang A, Wang Y, Zhu D, Wang J, Yang R. High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(38): 19294–19298
doi: 10.1039/C5TA05026J
37 Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y. Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30: 281–288
doi: 10.1016/j.orgel.2016.01.002
38 Marshall K P, Walker M, Walton R I, Hatton R A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178
doi: 10.1038/nenergy.2016.178
39 Feng H J, Paudel T R, Tsymbal E Y, Zeng X C. Tunable optical properties and charge separation in CH3NH3SnxPb1−xI3/TiO2-based planar perovskites cells. Journal of the American Chemical Society, 2015, 137(25): 8227–8236
doi: 10.1021/jacs.5b04015 pmid: 26011597
40 Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865
doi: 10.1126/science.aaf9717 pmid: 27856902
41 Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721
doi: 10.1002/aenm.201500721
42 Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122–7127
doi: 10.1002/adma.201401991 pmid: 25212785
43 Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(29): 14996–15000
doi: 10.1039/C5TA00190K
[1] FOE-17016-OF-TJ_suppl_1 Download
Related articles from Frontiers Journals
[1] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[2] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[3] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[4] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[5] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[6] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[7] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[8] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[9] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
[10] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[11] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[12] Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
[13] Cheng ZHANG,Jie ZHONG,Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Front. Optoelectron., 2015, 8(3): 252-268.
[14] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[15] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
Full text