Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials
Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, Ling XU
Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials
In this paper, we fabricated an organic thermoelectric (TE) device with modified [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis(dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 mV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured ~0.82 V, and generated power reached almost 945 mW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.
organic thermoelectric generator / thermocouple / poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) / [6.6]-phenyl-C61butyric acid methyl ester (PCBM)
[1] |
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
CrossRef
Pubmed
Google scholar
|
[2] |
Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1-2): 15–24
CrossRef
Google scholar
|
[3] |
Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in hole doped single-crystal SnSe. Science, 2016, 351(6269): 141–144
CrossRef
Google scholar
|
[4] |
Yan L, Shao M, Wang H, Dudis D, Urbas A, Hu B. High Seebeck effects from hybrid metal/polymer/metal thin-film devices. Advanced Materials, 2011, 23(35): 4120–4124
CrossRef
Pubmed
Google scholar
|
[5] |
Taggart D K, Yang Y, Kung S C, McIntire T M, Penner R M. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. Nano Letters, 2011, 11(1): 125–131
CrossRef
Pubmed
Google scholar
|
[6] |
Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 2011, 10(6): 429–433
CrossRef
Pubmed
Google scholar
|
[7] |
Zhang Q, Sun Y M, Xu W, Zhu D B. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions. Energy & Environmental Science, 2012, 5(11): 9639–9644
CrossRef
Google scholar
|
[8] |
Ma H K, Lin C P, Wu H P, Peng C H, Hsu C C. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Applied Thermal Engineering, 2015, 88: 274–279
CrossRef
Google scholar
|
[9] |
Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy & Environmental Science, 2012, 5(11): 9345–9362
CrossRef
Google scholar
|
[10] |
Bubnova O, Berggren M, Crispin X. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. Journal of the American Chemical Society, 2012, 134(40): 16456–16459
CrossRef
Pubmed
Google scholar
|
[11] |
Poehler T O, Katz H E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy & Environmental Science, 2012, 5(8): 8110–8115
CrossRef
Google scholar
|
[12] |
Jiao F, Di C A, Sun Y, Sheng P, Xu W, Zhu D B. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philosophical Transactions of the Royal Society A, 2014, 372(2013): 20130008
|
[13] |
Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of N- and P-type carbon Nanotubes. Energy & Environmental Science, 2012, 5(11): 9481–9486
CrossRef
Google scholar
|
[14] |
Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010, 5(4): 251–255
CrossRef
Pubmed
Google scholar
|
[15] |
Rojo M M, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M. Correction: Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. Nanoscale, 2015, 7(9): 4256–4257
CrossRef
Pubmed
Google scholar
|
[16] |
Hansen D, Bernier G A. Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity. Polymer Engineering and Science, 1972, 12(3): 204–208
CrossRef
Google scholar
|
[17] |
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667
CrossRef
Pubmed
Google scholar
|
[18] |
Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892
CrossRef
Pubmed
Google scholar
|
[19] |
Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X. Semi-metallic polymers. Nature Materials, 2014, 13(2): 190–194
CrossRef
Pubmed
Google scholar
|
[20] |
Culebras M, Gómez C M, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(26): 10109–10115
CrossRef
Google scholar
|
[21] |
Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37(5): 727–734
CrossRef
Google scholar
|
[22] |
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
CrossRef
Pubmed
Google scholar
|
[23] |
Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau W J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030
CrossRef
Google scholar
|
[24] |
Cho C, Stevens B, Hsu J H, Bureau R, Hagen D A, Regev O, Yu C, Grunlan J C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Advanced Materials, 2015, 27(19): 2996–3001
CrossRef
Pubmed
Google scholar
|
[25] |
Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T. Recent progress on PEDOT-based thermoelectric materials. Materials (Basel), 2015, 8(2): 732–750
CrossRef
Google scholar
|
[26] |
Bae E J, Kang Y H, Jang K S, Cho S Y. Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Scientific Reports, 2016, 6(1): 18805–18815
CrossRef
Pubmed
Google scholar
|
[27] |
Schlitz R A, Brunetti F G, Glaudell A M, Miller P L, Brady M A, Takacs C J, Hawker C J, Chabinyc M L. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Advanced Materials, 2014, 26(18): 2825–2830
CrossRef
Pubmed
Google scholar
|
[28] |
Russ B, Robb M J, Brunetti F G, Miller P L, Perry E E, Patel S N, Ho V, Chang W B, Urban J J, Chabinyc M L, Hawker C J, Segalman R A. Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Advanced Materials, 2014, 26(21): 3473–3477
CrossRef
Pubmed
Google scholar
|
[29] |
Dang M T, Hirsch L, Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research. Advanced Materials, 2011, 23(31): 3597–3602
CrossRef
Pubmed
Google scholar
|
[30] |
Chen D, Nakahara A, Wei D, Nordlund D, Russell T P. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Letters, 2011, 11(2): 561–567
CrossRef
Pubmed
Google scholar
|
[31] |
Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science, 2014, 7(8): 2642–2646
CrossRef
Google scholar
|
[32] |
Ye L, Zhang S Q, Qian D P, Wang Q, Hou J H. Application of bis-PCBM in polymer solar cells with improved voltage. Journal of Physics Chemistry C, 2013, 117: 25360–25366
CrossRef
Google scholar
|
[33] |
Ye L, Fan B H, Zhang S Q, Li S S , Yang B, Qin Y P, Hao Z, Hou J H. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58: 953–960
CrossRef
Google scholar
|
[34] |
Menke T, Ray D, Meiss J, Leo K, Riede M. In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. Applied Physics Letters, 2012, 100(9): 093304
CrossRef
Google scholar
|
[35] |
Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V. Oxygen doping of P3HT: PCBM blends: influence on trap states, charge carrier mobility and solar cell performance. Organic Electronics, 2010, 11(10): 1693–1700
CrossRef
Google scholar
|
[36] |
Lee H W, Yoon Y, Park S, Oh J H, Hong S, Liyanage L S, Wang H, Morishita S, Patil N, Park Y J, Park J J, Spakowitz A, Galli G, Gygi F, Wong P H, Tok J B, Kim J M, Bao Z. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications, 2011, 2: 541
CrossRef
Pubmed
Google scholar
|
[37] |
Gomulya W, Costanzo G D, de Carvalho E J F, Bisri S Z, Derenskyi V, Fritsch M, Fröhlich N, Allard S, Gordiichuk P, Herrmann A, Marrink S J, dos Santos M C, Scherf U, Loi M A. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Advanced Materials, 2013, 25(21): 2948–2956
CrossRef
Pubmed
Google scholar
|
[38] |
Menke T, Wei P, Ray D, Kleemann H, Naab B D, Bao Z, Leo K, Riede M. A comparison of two air-stable molecular n-dopants for C60. Organic Electronics, 2012, 13(12): 3319–3325
CrossRef
Google scholar
|
[39] |
Li F, Pfeiffer M, Werner A, Harada K, Leo K, Hayashi N, Seki K, Liu X, Dang X D. Acridine orange base as a dopant for n doping of C60 thin films. Journal of Applied Physics, 2006, 100(2): 023716
CrossRef
Google scholar
|
[40] |
Allard S, Forster M, Souharce B, Thiem H, Scherf U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angewandte Chemie, 2008, 47(22): 4070–4098
CrossRef
Pubmed
Google scholar
|
[41] |
Di C A, Zhang F, Zhu D. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Advanced Materials, 2013, 25(3): 313–330
CrossRef
Pubmed
Google scholar
|
[42] |
Rovira C. Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: from the molecule to functional molecular materials and devices (OFETs). Chemical Reviews, 2004, 104(11): 5289–5318
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |