Defect detection on button surfaces with the weighted least-squares model

Yu HAN, Yubin WU, Danhua CAO, Peng YUN

PDF(365 KB)
PDF(365 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (2) : 151-159. DOI: 10.1007/s12200-017-0687-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Defect detection on button surfaces with the weighted least-squares model

Author information +
History +

Abstract

Defect detection is important in quality assurance on production lines. This paper presents a fast machine-vision-based surface defect detection method using the weighted least-squares model. We assume that an inspection image can be regarded as a combination of a defect-free template image and a residual image. The defect-free template image is generated from training samples adaptively, and the residual image is the result of the subtraction between each inspection image and corresponding defect-free template image. In the weighted least-squares model, the residual error near the edge is suppressed to reduce the false alarms caused by spatial misalignment. Experiment results on different types of buttons show that the proposed method is robust to illumination vibration and rotation deviation and produces results that are better than those of two other methods.

Keywords

machine vision / surface defect detection / weighted least-squares model

Cite this article

Download citation ▾
Yu HAN, Yubin WU, Danhua CAO, Peng YUN. Defect detection on button surfaces with the weighted least-squares model. Front. Optoelectron., 2017, 10(2): 151‒159 https://doi.org/10.1007/s12200-017-0687-7

References

[1]
Li W B, Lu C H, Zhang J C. A lower envelope Weber contrast detection algorithm for steel bar surface pit defects. Optics & Laser Technology, 2013, 45(1): 654–659
CrossRef Google scholar
[2]
Crispin A J, Rankov V. Automated inspection of PCB components using a genetic algorithm template-matching approach. International Journal of Advanced Manufacturing Technology, 2007, 35(3): 293–300
CrossRef Google scholar
[3]
Arivazhagan S, Ganesan L, Bama S. Fault segmentation in fabric images using Gabor wavelet transform. Machine Vision and Applications, 2006, 16(6): 356–363
CrossRef Google scholar
[4]
Li W C, Tsai D M. Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recognition, 2012, 45(2): 742–756
[5]
Tsai D M, Wu S C, Chiu W Y. Defect detection in solar modules using ICA basis images. IEEE Transactions on Industrial Informatics, 2013, 9(1): 122–131
CrossRef Google scholar
[6]
Cen Y G, Zhao R Z, Cen L H, Cui L H, Miao Z J, Wei Z. Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction. Neurocomputing, 2015, 149: 1206–1215
CrossRef Google scholar
[7]
Zhou W, Fei M, Zhou H, Li K. A sparse representation based fast detection method for surface defect detection of bottle caps. Neurocomputing, 2014, 123: 406–414
CrossRef Google scholar
[8]
Bai X, Fang Y, Lin W, Wang L, Ju B F. Saliency-based defect detection in industrial images by using phase spectrum. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2135–2145
CrossRef Google scholar
[9]
Tsai D M, Chiang I Y, Tsai Y H. A shift-tolerant dissimilarity measure for surface defect detection. IEEE Transactions on Industrial Informatics, 2012, 8(1): 128–137
CrossRef Google scholar
[10]
Chan C H, Pang G K. Fabric defect detection by Fourier analysis. IEEE Transactions on Industry Applications, 2000, 36(5): 1267–1276
CrossRef Google scholar
[11]
Ngan H Y T, Pang G K H, Yung S P, Ng M K. Wavelet based methods on patterned fabric defect detection. Pattern Recognition, 2005, 38(4): 559–576
CrossRef Google scholar
[12]
Yang X, Pang G, Yung N. Robust fabric defect detection and classification using multiple adaptive wavelets. IEE Proceedings−Vision Image and Signal Processing, 2005, 152(6): 715
CrossRef Google scholar
[13]
Ralló M, Millán M S, Escofet J. Unsupervised novelty detection using Gabor filters for defect segmentation in textures. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2009, 26(9): 1967–1976
CrossRef Pubmed Google scholar
[14]
Kumar A, Pang G K. Defect detection in textured materials using Gabor filters. IEEE Transactions on Industry Applications, 2002, 38(2): 425–440
CrossRef Google scholar
[15]
Wang C C, Jiang B C, Lin J Y, Chu C C. Machine vision-based defect detection in IC images using the partial information correlation coefficient. IEEE Transactions on Semiconductor Manufacturing, 2013, 26(3): 378–384
CrossRef Google scholar
[16]
Zontak M, Cohen I. Defect detection in patterned wafers using anisotropic kernels. Machine Vision and Applications, 2010, 21(2): 129–141
CrossRef Google scholar
[17]
Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking.In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999, 2: 246–252
[18]
Kaewtrakulpong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. Springer US, 2002: 135–144
[19]
Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of International Conference on Pattern Recognition, 2004

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(365 KB)

Accesses

Citations

Detail

Sections
Recommended

/