Coupled two aluminum nanorod antennas for near-field enhancement

Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG

PDF(246 KB)
PDF(246 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (2) : 138-143. DOI: 10.1007/s12200-017-0663-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Coupled two aluminum nanorod antennas for near-field enhancement

Author information +
History +

Abstract

Aluminum (Al) plasmonic nanoantennas possess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discrete dipole approximation (DDA), the resonant optical properties and enhanced local field distribution of coupled Al nanorod antennas were investigated. The effects of gap distance on the extinction spectra were analyzed to obtain the surface plasmon modes of these nanostructures across the visible and in the UV spectral range, which can be attributed to the coupling of the surface plasmon modes from each Al nanorod. In addition, the enhanced local field factors plotted as a function of gap distance were simulated under transverse and longitudinal polarizations to achieve maximum near-field enhancement for the optical antennas. When the gap distance was decreased to 5 nm, the maximum value of the enhanced factor was 18.04 at the transverse mode peak of 424 nm. This could be explained by the combination of the interaction between the charges distributed at the opposite ends of two Al nanorods and the interaction between the charges distributed at the lateral sides of each Al nanorod. Results showed that the coupled Al nanorod antennas with enhanced local field show promise for UV plasmonics.

Keywords

aluminum (Al) nanorod / optical antennas / surface plasmon resonance (SPR)

Cite this article

Download citation ▾
Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG. Coupled two aluminum nanorod antennas for near-field enhancement. Front. Optoelectron., 2017, 10(2): 138‒143 https://doi.org/10.1007/s12200-017-0663-2

References

[1]
Zohrabi M, Mohebbifar M R. Electric field enhancement around gold tip optical antenna. Plasmonics, 2015, 10(4): 887–892 
CrossRef Google scholar
[2]
Chen P, Liu J, Wang L, Jin K, Yin Y, Li Z. Optimization and maximum potential of optical antennae in near-field enhancement. Applied Optics, 2015, 54(18): 5822–5828
CrossRef Pubmed Google scholar
[3]
Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. l/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters, 2007, 7(1): 28–33
CrossRef Pubmed Google scholar
[4]
Greffet J J. Nanoantennas for light emission. Science, 2005, 308(5728): 1561–1563
CrossRef Pubmed Google scholar
[5]
Li S Q, Zhou W, Buchholz D B, Ketterson J B, Ocola L E, Sakoda K, Chang R P H. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104(23): 231101
CrossRef Google scholar
[6]
Klaer P, Razinskas G, Lehr M, Krewer K, Schertz F, Wu X, Hecht B, Schönhense G, Elmers H J. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas. Applied Physics Letters, 2015, 106(26): 261101
CrossRef Google scholar
[7]
Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155457
CrossRef Google scholar
[8]
Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009, 3(11): 654–657
CrossRef Google scholar
[9]
Atie E M, Xie Z, Eter A E, Salut R, Nedeljkovic D, Tannous T, Baida F I, Grosjean T. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy. Applied Physics Letters, 2015, 106(15): 151104 
CrossRef Google scholar
[10]
Zhu W, Rukhlenko I D, Xiao F, Premaratne M. Polarization conversion in U- shaped chiral meta-material with four-fold symmetry breaking. Journal of Applied Physics, 2014, 115(14): 143101
CrossRef Google scholar
[11]
Zhang Z Y, Zhao Y P. Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes. Journal of Applied Physics, 2007, 102(11): 113308
CrossRef Google scholar
[12]
Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M, Bokor J, Yablonovitch E, Wu M C. Radiation engineering of optical antennas for maximum field enhancement. Nano Letters, 2011, 11(7): 2606–2610
CrossRef Pubmed Google scholar
[13]
Rose A, Hoang T B, McGuire F, Mock J J, Ciracì C, Smith D R, Mikkelsen M H. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Letters, 2014, 14(8): 4797–4802
CrossRef Pubmed Google scholar
[14]
Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J. Aluminum for plasmonics. ACS Nano, 2014, 8(1): 834–840
CrossRef Pubmed Google scholar
[15]
Sanz J M, Ortiz D, Alcaraz De La Osa R, Saiz J M, González F, Brown A S, Losurdo M, Everitt H O, Moreno F. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes. Journal of Physical Chemistry C, 2013, 117(38): 19606–19615
CrossRef Google scholar
[16]
Ono A, Kikawada M, Akimoto R, Inami W, Kawata Y. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation. Optics Express, 2013, 21(15): 17447–17453
CrossRef Pubmed Google scholar
[17]
Ekinci Y, Solak H H, Löffler J F. Plasmon resonances of aluminum nanoparticles and nanorods. Journal of Applied Physics, 2008, 104(8): 083107
CrossRef Google scholar
[18]
Wang J, Walters F, Liu X, Sciortino P, Deng X. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Applied Physics Letters, 2007, 90(6): 061104
CrossRef Google scholar
[19]
Burgos S P, de Waele R, Polman A, Atwater H A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Materials, 2010, 9(5): 407–412
CrossRef Pubmed Google scholar
[20]
Zhu J, Li J, Zhao J. Tuning the plasmon band number of aluminum nanorod within the ultraviolet-visible region by gold coating. Physics of Plasmas, 2014, 21(11): 112108
CrossRef Google scholar
[21]
McMahon J M, Schatza G C, Gray S K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Physical Chemistry Chemical Physics, 2013, 17(29): 5415–5423 
CrossRef Google scholar
[22]
Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P, Halas N J. Close encounters between two nanoshells. Nano Letters, 2008, 8(4): 1212–1218
CrossRef Pubmed Google scholar
[23]
Jain P K, El-Sayed M A. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Letters, 2008, 8(12): 4347–4352
CrossRef Pubmed Google scholar
[24]
Prodan E, Radloff C, Halas N J, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302(5644): 419–422
CrossRef Pubmed Google scholar
[25]
Hermoso W, Alves T V, Ornellas F R, Camargo P H C. Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. European Physical Journal D, 2012, 66(5): 135
[26]
Shi H, Wang C, Zhou Y, Jin K, Yang G. Silver nanoparticles grown in organic solvent PGMEA by pulsed laser ablation and their nonlinear optical properties. Journal of Nanoscience and Nanotechnology, 2012, 12(10): 7896–7902 
CrossRef Pubmed Google scholar
[27]
Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. Journal of Physical Chemistry C, 2007, 111(10): 3806–3819
CrossRef Google scholar
[28]
González A L, Noguez C, Ortiz G P, Rodríguez-Gattorno G. Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles. Journal of Physical Chemistry B, 2005, 109(37): 17512–17517
CrossRef Pubmed Google scholar
[29]
Deng Y, Liu G, Zhang L, Ming H. Far- and near-field optical properties of Al nanorod by discrete dipole approximation. Journal of Modern Optics, 2015, 62(15): 1199–1203
CrossRef Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 21271007), the Foundation for Young Talents in College of Anhui Province (No. 2013SQRL044ZD), the Colleges and Universities Natural Science Foundation of Anhui Province (No. KJ2016JD18).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(246 KB)

Accesses

Citations

Detail

Sections
Recommended

/