Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 44-52     DOI: 10.1007/s12200-016-0630-3
REVIEW ARTICLE |
Parameters that control and influence the organo-metal halide perovskite crystallization and morphology
Bat-El COHEN,Lioz ETGAR()
Institute of Chemistry, The Hebrew University of Jerusalem, Casali Center for Applied Chemistry, Jerusalem 91904, Israel
Download: PDF(1996 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review discusses various parameters that influence and control the organo-metal halide perovskite crystallization process. The effect of the perovskite morphology on the photovoltaic performance is a critical factor. Moreover, it has a dramatic effect on the stability of the perovskite, which has significant importance for later use of the organo-metal perovskite in assorted applications. In this review, we brought together several research investigations that describe the main parameters that significantly influence perovskite crystallization, for example, the annealing process, the precursor solvent, anti-solvent treatment, and additives to the iteite solutions.

Keywords hybrid perovskite      morphology      crystallization      perovskite surface     
Corresponding Authors: Lioz ETGAR   
Just Accepted Date: 19 February 2016   Online First Date: 16 March 2016    Issue Date: 18 March 2016
 Cite this article:   
Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0630-3
http://journal.hep.com.cn/foe/EN/Y2016/V9/I1/44
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bat-El COHEN
Lioz ETGAR
Fig.1  (a) One-step and multi-step methods; (b) insets are photographs of perovskite films. Taken with permission from Ref. [8]
Fig.2  SEM images of the perovskite film precursor. The films were annealed under various conditions. (a) and (b) under nitrogen; (c) and (d) in ambient air; (e) and (f) in an oxygen environment. The small white dots in the SEM images are evaporated gold particles on the perovskite film surface to reduce charge effect during SEM measurements. Taken with permission from Ref. [14]
Fig.3  Schematic view of the crystal growth process of perovskite thin film via molecular self-assembly approach in the presence of DMSO. Taken with permission from Ref. [19]
Fig.4  Schematic illustration of spin coating process for preparing perovskite films based on a DMAC solution of CH3NH3PbI3 (upper); based on a DMF solution of CH3NH3PbI3 (lower). Taken with permission from Ref. [21]
Fig.5  Scheme of solvent engineering process. Taken with permission from Ref. [16]
Fig.6  Topographical SEM images (a-c) pristine PbI2 with HI and PbI2 with HCl on the TiO2 dense layer coated FTO, respectively. (d-f) CH3NH3PbI3, CH3NH3PbI3 + HI, and CH3NH3PbI3 + HCl, respectively, after sequentially reacting with CH3NH3I. Taken with permission from Ref. [30]
Fig.7  (a) Schematic illustration of the configurations of PbI2, HPbI3 and FAPbI3; (b) solubility comparisons of PbI2 (left) and HPbI3 (right) in DMF. Both solutions have a concentration of 2 mol/L and have been stirred for 24 h. Taken with permission from Ref. [31]
Fig.8  Schematic of the processes of fabricating PbI2 and perovskite films: (a) C-PbI2 and (b) SAP-PbI2. Taken with permission from Ref. [40]
1 Aharon S, Dymshits A, Rotem A, Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9171–9178
doi: 10.1039/C4TA05149A
2 Huang L, Hu Z, Yue G, Liu J, Cui X, Zhang J, Zhu Y. CH3NH3PbI3-xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(34): 22015–22022
doi: 10.1039/C5CP03934G pmid: 26234908
3 Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Advanced Functional Materials, 2014, 24(21): 3250–3258
doi: 10.1002/adfm.201304022
4 Cohen B E, Gamliel S, Etgar L. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Materials, 2014, 2(8): 081502
doi: 10.1063/1.4885548
5 Chiang C, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(38): 15897–15903
doi: 10.1039/C4TA03674C
6 Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
doi: 10.1039/C4EE01138D
7 Xiao J, Yang Y, Xu X, Shi J, Zhu L, Lv S, Wu H, Luo Y, Li D, Meng Q. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3(10): 5289–5293
doi: 10.1002/adfm.201304022
8 Huang L, Hu Z, Xu J, Zhang K, Zhang J, Zhu Y. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141: 377–382
doi: 10.1016/j.solmat.2015.06.018
9 Jeon Y J, Lee S, Kang R, Kim J E, Yeo J S, Lee S H, Kim S S, Yun J M, Kim D Y. Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4: 6953
doi: 10.1038/srep06953 pmid: 25377945
10 Bao X, Wang Y, Zhu Q, Wang N, Zhu D, Wang J, Yang A, Yang R. Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297: 53e58
11 Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
doi: 10.1039/C4EE01138D
12 Tao C, Neutzner S, Colella L, Marras S, Kandada A R S, Gandini M, De Bastiani M, Pace G, Manna L, Caironi M, Bertarelli C, Petrozza A. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy & Environmental Science, 2015, 8(8): 2365–2370
doi: 10.1039/C5EE01720C
13 Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications (Cambridge), 2014, 50(99): 15819–15822
doi: 10.1039/C4CC05231E pmid: 25379572
14 You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y. Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105(18): 183902
doi: 10.1063/1.4901510
15 Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6(12): 6679–6683
doi: 10.1039/c4nr00130c pmid: 24817432
16 Nam J J, Jun H N, Young C K, Woon SY, Ryu S, Seok S. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
17 Lian J, Wang Q, Yuan Y, Shao Y, Huang J. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3: 9146
18 Cai B, Zhang W H, Qiu J. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chinese Journal of Catalysis, 2015, 36(8): 1183–1190
doi: 10.1016/S1872-2067(15)60929-9
19 Li W, Fan J, Li J, Mai Y, Wang L. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. Journal of the American Chemical Society, 2015, 137(32): 10399–10405
doi: 10.1021/jacs.5b06444 pmid: 26247096
20 Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452
doi: 10.1021/jacs.5b06658 pmid: 26313318
21 Lv M, Dong X, Fang X, Lin B, Zhang S, Ding J, Yuan N. A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Advances, 2015, 5(26): 20521–20529
doi: 10.1039/C4RA16253F
22 Wu Y, Chen W, Yue Y, Liu J, Bi E, Yang X, Islam A, Han L. Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(37): 20707–20713
doi: 10.1021/acsami.5b05576 pmid: 26317144
23 Rong Y, Tang Z, Zhao Y, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M, Yao Y. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7(24): 10595–10599
doi: 10.1039/C5NR02866C pmid: 26037081
24 Lin K F, Chang S H, Wang K H, Cheng H M, Chiu K Y, Lee K M, Chen S H, Wu C G. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Solar Energy Materials and Solar Cells, 2015, 141: 309–314
doi: 10.1016/j.solmat.2015.06.002
25 Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie, 2014, 53(37): 9898–9903
doi: 10.1002/anie.201405334 pmid: 25047967
26 Zheng X, Chen B, Wu C, Priya S. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis. Nano Energy, 2015, 17: 269–278
doi: 10.1016/j.nanoen.2015.08.023
27 Cohen B E, Aharon S, Dymshits A, Etgar L. Impact of anti-solvent treatment on carrier density in efficient hole conductor free perovskite based solar cells. Journal of Physical Chemistry, 2016, 120(1): 142–147
doi: 10.1021/acs.jpcc.5b10994
28 Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
doi: 10.1126/science.1254763 pmid: 25035487
29 Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982
doi: 10.1039/c3ee43822h
30 Yang L, Wang J, Leung W W F. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14614–14619
doi: 10.1021/acsami.5b01049 pmid: 26108296
31 Wang F, Yu H, Xu H, Zhao N. HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Advanced Functional Materials, 2015, 25(7): 1120–1126
doi: 10.1002/adfm.201404007
32 Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H,Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711
doi: 10.1038/nchem.2324
33 Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chemical Communications (Cambridge), 2013, 49(72): 7893–7895
doi: 10.1039/c3cc44177f pmid: 23900427
34 Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials, 2014, 26(22): 3748–3754
doi: 10.1002/adma.201400231 pmid: 24634141
35 Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. Journal of Physical Chemistry C, 2014, 118(18): 9412–9418
doi: 10.1021/jp502696w
36 Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Applied Materials & Interfaces, 2015, 7(8): 4955–4961
doi: 10.1021/acsami.5b00052 pmid: 25679316
37 Huang Y C, Tsao C S, Cho Y J, Chen K C, Chiang K M , Hsiao S Y , Chen C W , Su C J , Jeng U S , Lin H W . Insight into evolution, processing and performance of multilength-scale structures in planar heterojunction perovskite solar cells. Scientific Reports, 2015, 5:13657
doi: 10.1038/srep13657
38 Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433
doi: 10.1021/jz402706q pmid: 26276587
39 Chueh C C, Liao C Y, Zuo F, Williams S T, Liang P W, Jen A K Y. The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9058–9062
doi: 10.1039/C4TA05012F
40 Zhang H, Mao J, He H, Zhang D, Zhu H L, Xie F, Wong K S, Grätzel M, Choy W C H. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354
doi: 10.1002/aenm.201501354
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed