Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (1) : 31-37     DOI: 10.1007/s12200-016-0595-2
RESEARCH ARTICLE |
Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells
Dong XU, Sheng YIN(), Xiangbin ZENG, Song YANG, Xixing WEN
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(356 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Textured surface boron-doped zinc oxide (BZO) thin films were fabricated by metal organic chemical vapor deposition as transparent conductive oxide (TCO) for solar cells. The surface microstructure was characterized by X-ray diffraction spectrum and scanning electron microscope. The optical transmittance was shown by optical transmittance microscope and the electrical properties were tested by Hall measurements. The thickness of the BZO film has crucial impact on the surface morphology, optical transmittance, and resistivity. The electrical and optical properties as well as surface microstructure varied inconsistently with the increase of the film thickness. The grain size and the surface roughness increased with the increase of the film thickness. The conductivity increased from 0.96×103 to 6.94×103 S/cm while the optical transmittance decreased from above 85% to nearly 80% with the increase of film thickness from 195 to 1021 nm. The BZO films deposited as both front and back transparent electrodes were applied to the bifacial p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n+-type a-Si:H heterojunction solar cells to obtain the optimized parameter of thickness. The highest efficiency of all the samples was 17.8% obtained with the BZO film thickness of 829 nm. Meanwhile, the fill factor was 0.676, the open-circuit voltage was 0.63 V and the short-circuit density was 41.79 mA/cm2. The properties of the solar cells changing with the thickness were also investigated.

Keywords boron-doped zinc oxide (BZO)      metal organic chemical vapor deposition (MOCVD)      heterojunction solar cell      thickness      textured surface      transparent conductive oxide (TCO)     
Corresponding Authors: Sheng YIN   
Just Accepted Date: 14 September 2016   Online First Date: 17 October 2016    Issue Date: 17 March 2017
 Cite this article:   
Dong XU,Sheng YIN,Xiangbin ZENG, et al. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0595-2
http://journal.hep.com.cn/foe/EN/Y2017/V10/I1/31
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong XU
Sheng YIN
Xiangbin ZENG
Song YANG
Xixing WEN
Fig.1  XRD patterns of BZO films with different thickness
Tab.1  Variation of the Bragg angle 2 θ, FWHM and crystal size with thickness
Fig.2  Surface morphology?of the BZO film with the thickness of (a) 195 nm, (b) 383 nm, (c) 607 nm, (d) 829 nm, (e) 1021 nm
Fig.3  Plot of (a) carrier concentration, (b) Hall mobility, and (c) resistivity of the BZO films versus the film thickness
Fig.4  Optical transmittance of BZO films with different thickness
Fig.5  Tauc plots with different thickness
Fig.6  (a) Schematic diagram of the bifacial heterojunction solar cells; (b) current density–voltage (I–V) curves of the bifacial a-Si:H/c-Si heterojunction solar cells applied with the ZnO:B films of 195–1021 nm as electrodes
1 Wenas W W, Yamada  A, Takahashi K ,  Yoshino M ,  Konagai M  Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 1991, 70(11): 7119–7123
doi: 10.1063/1.349794
2 Choi I. Properties of boron-doped ZnO thin films grown by using MOCVD. Journal of the Korean Physical Society, 2013, 63(10): 1997–2001
doi: 10.3938/jkps.63.1997
3 Gao L, Zhang  Y, Zhang J ,  Xu K. Boron doped ZnO thin films fabricated by RF-magnetron sputtering. Applied Surface Science, 2011, 257(7): 2498–2502
doi: 10.1016/j.apsusc.2010.10.009
4 Jana S, Vuk  A S, Mallick  A, Orel B ,  Biswas P K . Effect of boron doping on optical properties of sol-gel based nanostructured zinc oxide films on glass. Materials Research Bulletin, 2011, 46(12): 2392–2397
doi: 10.1016/j.materresbull.2011.08.038
5 Pawar B N, Jadkar  S R, Takwale  M G. Deposition and characterization of transparent and conductive sprayed ZnO:B thin films. Journal of Physics and Chemistry of Solids, 2005, 66(10): 1779–1782
doi: 10.1016/j.jpcs.2005.08.086
6 Yamamoto Y, Saito  K, Takahashi K ,  Konagai M . Preparation of boron-doped ZnO thin films by photo-atomic layer deposition. Solar Energy Materials and Solar Cells, 2001, 65(1-4): 125–132
doi: 10.1016/S0927-0248(00)00086-6
7 Müller J, Rech  B, Springer J ,  Vanecek M . TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77(6): 917–930
doi: 10.1016/j.solener.2004.03.015
8 Yin J, Zhu  H, Wang Y ,  Wang Z, Gao  J, Mai Y ,  Ma Y, Wan  M, Huang Y . A study of ZnO:B films for thin film silicon solar cells. Applied Surface Science, 2012, 259:758–763
doi: 10.1016/j.apsusc.2012.07.117
9 Zeng X, Wen  X, Sun X ,  Liao W, Wen  Y. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells. Thin Solid Films, 2016,  605(30): 257–262
doi: 10.1016/j.tsf.2015.11.023
10 Addonizio M L ,  Diletto C . Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Solar Energy Materials and Solar Cells, 2008, 92(11): 1488–1494
doi: 10.1016/j.solmat.2008.06.013
11 Dong B, Fang  G, Wang J ,  Guan W, Zhao  X. Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. Journal of Applied Physics, 2007, 101(3): 033713-1–033713-7 
doi: 10.1063/1.2437572
12 Exarhos G J, Zhou  X D. Discovery-based design of transparent conducting oxide films. Thin Solid Films, 2007, 515(18): 7025–7052
doi: 10.1016/j.tsf.2007.03.014
13 Faÿ S. Science of Microtechnique, Institute of Procuction and Robotic, écolePolytechniqueFédérale de Lausanne, Lausanne, 2003
14 Kumar V, Singh  R G, Purohit  L P, Mehra  R M. Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. Journal of Materials Science and Technology, 2011, 27(6): 481–488
doi: 10.1016/S1005-0302(11)60095-9
15 Huang Q, Wang  Y, Wang S ,  Zhang D ,  Zhao Y, Zhang  X. Transparent conductive ZnO:B films deposited by magnetron sputtering. Thin Solid Films, 2012, 520(18): 5960–5964
doi: 10.1016/j.tsf.2012.05.014
Related articles from Frontiers Journals
[1] Guangli WANG, Yi SHI, Lijia PAN, Lin PU, Jin LV, Rong ZHANG, Youdou ZHENG. Charge trapping memory devices employing multi-layered Ge/Si nanocrystals for storage fabricated with ALD and PLD methods[J]. Front Optoelec Chin, 2011, 4(2): 146-149.
[2] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[3] Xianjie LI, Yingbin LIU, Zhen FENG, Fan GUO, Yonglin ZHAO, Run ZHAO, Rui ZHOU, Chen LOU, Shizu ZHANG. AlGaAs/GaAs quantum well infrared photodetector focal plane array based on MOCVD technology[J]. Front Optoelec Chin, 2008, 1(3-4): 313-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed