Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 412-419     DOI: 10.1007/s12200-016-0580-9
RESEARCH ARTICLE |
Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning
Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG()
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Download: PDF(443 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mode characteristics are investigated for the rectangular microresonators with an output waveguide connected to the midpoint of the long side for wide and continuous wavelength tuning. Through adjusting the aspect ratio of the rectangular microresonator, the mode Q factors can be greatly enhanced. Furthermore, the large mode interval between the high-Q modes makes the rectangular microresonators suitable for tunable lasers. As a special case, single-mode operation is achieved with a continuous tuning range of 9.1 nm for a square microlaser with the side length of 17.8 mm and the output waveguide width of 1.8 mm.

Keywords rectangular microresonator      semiconductor laser      tunable laser     
Corresponding Authors: Yongzhen HUANG   
Just Accepted Date: 03 August 2016   Online First Date: 12 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Mingying TANG,Shaoshuai SUI,Yuede YANG, et al. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0580-9
http://journal.hep.com.cn/foe/EN/Y2016/V9/I3/412
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingying TANG
Shaoshuai SUI
Yuede YANG
Jinlong XIAO
Yun DU
Yongzhen HUANG
Fig.1  2D schematic diagram of the rectangular microresonator with an output waveguide connected to the midpoint of the long side
Fig.2  (a) Mode Q factors for the symmetric and antisymmetric modes, with the highest mode Q factors of the modes with the wavelengths ranging from 1450 to 1650 nm for the rectangular microresonator with b/a ranging from 1 to 2.4 at a step of 0.1 as S = 100 mm2 and w = 1 mm, and the mode field distributions for the corresponding symmetric modes in the rectangular microresonators at b/a of (b) 1, (c) 1.4, (d) 1.8 and (e) 2.1, respectively. The field distributions in the output waveguide are magnified by 5 times and the proportional scales of (b)−(e) are different
Fig.3  Mode intensity spectra for the symmetric modes and antisymmetric modes in (a) the square microresonators and (b) the rectangular microresonators with b/a = 1.8 as S = 100 mm2 and w = 1 mm
Fig.4  Mode field distributions for the symmetric modes (a) C1 and (b) C3, and antisymmetric modes (c) D3 and (d) D5 in the rectangular microresonator with b/a = 1.8 and w = 1 mm. The field distributions in the output waveguide are magnified by 5 times
modes Q factor original modes modes Q factor original modes
C1 2.90 × 104 TE(23,34), TE(21,38) D1 4.68 × 103 TE(26,31), TE(24,35)
C2 3.09 × 103 TE(22,34), TE(20,38) D2 4.03 × 103 TE(25,31), TE(23,35)
C3 9.17 × 103 TE(22,32), TE(20,36) D3 9.45 × 103 TE(22,33), TE(20,37)
C4 4.83 × 103 TE(23,28), TE(21,32) D4 2.75 × 103 TE(23,29), TE(21,33)
C5 2.28 × 103 TE(23,26), TE(21,30) D5 1.43 × 104 TE(22,29), TE(20,33)
D6 4.18 × 103 TE(23,25), TE(21,29)
Tab.1  Mode Q factors and original modes for the high-Q coupled modes in the rectangular microresonator with b/a = 1.8 and w = 1 mm
Fig.5  Mode Q factors for the symmetric and antisymmetric modes (a), with the highest mode Q factors of the modes with the wavelengths ranging from 1450 to 1650 nm for the rectangular microresonator with b/a ranging from 1 to 2.4 at a step of 0.1 as S = 144 mm2 and w = 1 mm. and the mode field distributions for the corresponding symmetric modes in the rectangular microresonators at b/a of (b) 1, (c) 1.4, (d) 1.8 and (e) 2.1, respectively. The field distributions in the output waveguide are magnified by 5 times and the proportional scales of (b)−(e) are different
Fig.6  Mode Q factors versus the output waveguide width for (a) modes TEo,(30,34), TEo,(28,32), TEo,(29,33) and TEo,(27,31) in the square microresonator and (b) modes C1, C3, D3 and D5 in the rectangular microresonators with b/a = 1.8 as S = 100 mm2
Fig.7  (a) Output power and applied voltage versus CW injection current at 291 K, (b) lasing spectra at different currents at 291 K, and (c) lasing wavelength and SMSR versus the current at 291 K, for the square microlaser with the side length of 17.8 mm and the output waveguide width of 1.8 mm
1 McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Applied Physics Letters, 1992, 60(3): 289–291
doi: 10.1063/1.106688
2 Baba T, Yogo Y, Suzuki K, Koyama F, Iga K. Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser. Electronics Letters, 1993, 29(10): 913–914
doi: 10.1049/el:19930609
3 Levi A F J, Slusher R E, Mccall S L, Glass J L, Pearton S J, Logan R A. Directional light coupling from microdisk lasers. Applied Physics Letters, 1993, 62(6): 561–563
doi: 10.1063/1.108911
4 Zhang Z, Yang L, Liu V, Hong T, Vahala K, Scherer A. Visible submicron microdisk lasers. Applied Physics Letters, 2007, 90(11): 111119–111121
doi: 10.1063/1.2714312
5 Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Optics Express, 2009, 17(25): 23010–23015
doi: 10.1364/OE.17.023010 pmid: 20052227
6 Wang S J, Lin J D, Huang Y Z, Yang Y D, Che K J, Xiao J L, Du Y, Fan Z C. AlGaInAs-InP microcylinder lasers connected with an output waveguide. IEEE Photonics Technology Letters, 2010, 22(18): 1349–1351
doi: 10.1109/LPT.2010.2056361
7 Poon A W, Courvoisier F, Chang R K. Multimode resonances in square-shaped optical microcavities. Optics Letters, 2001, 26(9): 632–634
doi: 10.1364/OL.26.000632 pmid: 18040406
8 Boriskina S V, Benson T M, Sewell P, Nosich A I. Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness. Journal of the Optical Society of America B: Optical Physics, 2005, 21(10): 1792–1796
doi: 10.1364/JOSAB.21.001792
9 Guo W H, Huang Y Z, Lu Q Y, Yu L J. Whispering-gallery-like modes in square resonators. IEEE Journal of Quantum Electronics, 2003, 39(9): 1106–1110
doi: 10.1109/JQE.2003.816090
10 Che K J, Huang Y Z. Mode characteristics of metallically coated square microcavity connected with an output waveguide. Journal of Applied Physics, 2010, 107(11): 113103
doi: 10.1063/1.3431400
11 Long H, Huang Y Z, Yang Y D, Zou L X, Lv X M, Liu B W, Xiao J L, Du Y. Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers. IEEE Journal of Quantum Electronics, 2014, 50(12): 981–989
doi: 10.1109/JQE.2014.2365201
12 Tang M Y, Sui S S, Yang Y D, Xiao J L, Du Y, Huang Y Z. Mode selection in square resonator microlasers for widely tunable single mode lasing. Optics Express, 2015, 23(21): 27739–27750
doi: 10.1364/OE.23.027739 pmid: 26480436
13 Lin J D, Huang Y Z, Yang Y D, Yao Q F, Lv X M, Xiao J L, Du Y. Single transverse whispering-gallery mode AlGaInAs/InP hexagonal resonator microlasers. IEEE Photonics Journal, 2011, 3(4): 756–764
doi: 10.1109/JPHOT.2011.2163498
14 Zou L X, Lv X M, Huang Y Z, Long H, Xiao J L, Yao Q F, Lin J D, Du Y. Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501808
doi: 10.1109/JSTQE.2013.2244566
15 Huang Y Z, Chen Q, Guo W H, Lu Q Y, Yu L J. Mode characteristics for equilateral triangle optical resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 59–65
doi: 10.1109/JSTQE.2005.862994
16 Huang Y Z, Hu Y H, Chen Q, Wang S J, Du Y, Fan Z C. Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers. IEEE Photonics Technology Letters, 2007, 19(13): 963–965
doi: 10.1109/LPT.2007.898822
17 Ni C Y A, Chang S W, Gargas D J, Moore M C, Yang P D, Chuang S L. Metal-coated zinc oxide nanocavities. IEEE Journal of Quantum Electronics, 2011, 47(2): 245–251
doi: 10.1109/JQE.2010.2073680
18 Zhang C, Zhang F, Sun X W, Yang Y, Wang J, Xu J. Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks. Optics Letters, 2009, 34(21): 3349–3351
doi: 10.1364/OL.34.003349 pmid: 19881590
19 Yang Y D, Huang Y Z. Mode analysis and Q-factor enhancement due to mode coupling in rectangular resonators. IEEE Journal of Quantum Electronics, 2007, 43(6): 497–502
doi: 10.1109/JQE.2007.897879
20 Guo W H, Li W J, Huang Y Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 223–225
doi: 10.1109/7260.923035
21 Mccaulley J A, Donnelly V M, Vernon M, Taha I.Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. Physical Review B: Condensed Matter, 1994, 49(11): 7408–7417
Related articles from Frontiers Journals
[1] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[2] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[3] Md. Jarez MIAH,Vladimir P. KALOSHA,Ricardo ROSALES,Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Front. Optoelectron., 2016, 9(2): 225-237.
[4] Sudharsanan SRINIVASAN,Michael DAVENPORT,Martijn J. R. HECK,John HUTCHINSON,Erik NORBERG,Gregory FISH,John BOWERS. Low phase noise hybrid silicon mode-locked lasers[J]. Front. Optoelectron., 2014, 7(3): 265-276.
[5] Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Front Optoelec, 2014, 7(1): 1-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed