Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications

Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL

Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 518-525.

PDF(293 KB)
Front. Optoelectron. All Journals
PDF(293 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 518-525. DOI: 10.1007/s12200-016-0572-9
REVIEW ARTICLE
REVIEW ARTICLE

Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications

Author information +
History +

Abstract

Emerging applications based on optical beams carrying orbital angular momentum (OAM) will likely require photonic integrated devices and circuits for miniaturization, improved performance and enhanced functionality. This paper reviews the state-of-the art in the field of OAM of light, reports recent developments in silicon integrated OAM emitters, and discusses the applications potentials and challenges in silicon integrated OAM devices which can be used in future OAM based optical communications systems.

Keywords

silicon photonics / photonic integrated circuits (PICs) / whispering gallery modes (WGMs) / optical communications

Cite this article

Download citation ▾
Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications. Front. Optoelectron., 2016, 9(3): 518‒525 https://doi.org/10.1007/s12200-016-0572-9
Optical metasurfaces, composed of planar arrays of sub-wavelength dielectric or metallic structures that collectively mimic the operation of conventional bulk optical elements, have revolutionized the field of optics by their potential in constructing high-efficiency and multi-functional optoelectronic systems with a compact form factor. By engineering the geometry, placement, and alignment of its constituent elements, an optical metasurface arbitrarily controls the magnitude, polarization, phase, angular momentum, or dispersion of incident light. The study of metasurface now spans various multidisciplinary fields in both fundamental research on light-matter interaction [13], and emerging applications from solid-state LiDAR [4,5] to compact imaging, spectroscopy, and quantum optical devices [611]. High-performance metasurface devices have been experimentally demonstrated over the entire optical spectrum from the deep ultraviolet to the terahertz (THz) [1216], and have been employed to manipulate optical waves in both spatial and temporal domains [1721].
This special issue on “Recent Advances in Optical Metasurfaces” includes five review articles and five research articles, covering various topics ranging from metasurface design to practical applications. Qiu et al. [22] provide a comprehensive review of the fundamentals and applications of spin-decoupled Pancharatnam−Berry (PB) metasurfaces. Different from traditional PB-phase-based metasurfaces which impinge phase modulations with opposite signs onto the left-handed and right-handed circularly polarized light, the spin-decoupled PB metasurfaces release the above spin-locked limitation and allow independent and arbitrary control over orthogonal circular polarizations. The recent development of bianisotropic metasurfaces has allowed versatile control over the state of polarization and propagation direction of light. Xiong et al. [23] discuss the electromagnetic properties of photonic bianisotropic structures using the finite element method. The authors show that the vector wave equation with the presence of bianisotropy is self-adjoint under the scalar inner product and propose a balanced formulation of weak form in the practical implementation that outperforms the standard formulation in finite element modeling. Realizing active devices with adjustable functionalities is of great interest to the metasurface research community. Bi et al. [24] review the physical mechanisms and device applications of magnetically controllable metasurfaces. Magnetic field manipulation has advantages of ultra-fast response, non-contact and continuous adjustment, thus paving the way toward realizing multi-functional and dynamic metasurface-based devices and systems.
Several typical as well as emerging applications of the metasurface technology, are covered by this special issue. Fu et al. [25] give a comprehensive review of metalenses, tiny planar imaging devices enabled by metasurface technology. The article covers the basic phase modulation techniques, design principles, characterization methods, and functional applications of metalenses. Although a metalens might not fully compete with a conventional lens in terms of imaging quality at the current stage, it possesses unique advantages in terms of multi-dimensional and multi-degree-of-freedom control over an incident light, thus facilitating novel functionalities that are extremely difficult or even impossible to implement using conventional technology. The electromagnetic absorber is another typical application of metasurface technology. Gandhi et al. [26] propose a polarization-insensitive metasurface absorber operating in the THz regime. The device consists of metal-dielectric-metal resonators and exhibits absorption greater than 90% over the 2.54 to 5.54 THz range. In recent years, edge detection using metasurfaces has raised a significant interest and could find promising applications in all-optical computing and artificial intelligence. Wan et al. [27] review the development of dielectric metasurfaces for spatial differentiation and edge detection. The article focuses on the underlying principles of dielectric metasurfaces as first- or second-order spatial differentiators and their applications in biological imaging and machine vision.
Non-diffractive beams are highly desired for a number of applications, including biomedical imaging, particle manipulation, and material processing. Liu et al. [28] investigate dual non-diffractive THz beam generation using dielectric metasurfaces. The authors design and experimentally implement Bessel beams and abruptly autofocusing beams, two representative kinds of non-diffractive beams with dramatically opposite focusing properties. With its compact footprint and multiple functionalities, metasurface offers new possibilities in constructing high-performance optical sensors. Ye et al. [29] introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling (PTX)-symmetric non-Hermitian metasurfaces. Such devices leverage exotic singularities, such as the exceptional point and the coherent perfect absorber-laser point, to significantly enhance the sensitivity and detectability of photonic sensors. Ren et al. [30] propose a U-shaped THz metamaterial with polarization-sensitive and actively-controllable electromagnetically induced transparency, which could find useful applications in tunable integrated devices such as biosensors, filters, and THz modulators. Realizing large-scale and low-cost fabrication of metasurface could greatly facilitate the technology’s practical applications. Oh et al. [31] review the development of nanoimprint lithography for high-throughput fabrication of optical metasurfaces. The authors elaborate various imprint methods for scalable fabrication of metasurfaces and share their perspectives on the technology’s future development.
We hope that this special issue on “Recent Advances in Optical Metasurfaces” could provide useful information for metasurface researchers and inspire new ideas for their future exploration. We thank all authors for their contribution to this special issue, and reviewers for their valuable comments. In the end, we would like to express sincere gratitude to the editors of Frontiers of Optoelectronics for providing us such an excellent opportunity to put together this special issue and their invaluable assistance along the way.

References

[1]
Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125
CrossRef Google scholar
[2]
Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394(6691): 348–350 doi:10.1038/28566
[3]
Humblet J. Sur le moment d’impulsion d’une onde electromagntique. Physica A, 1943, 10(7): 585–603
[4]
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189
CrossRef Pubmed Google scholar
[5]
Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, 112(5–6): 321–327
CrossRef Google scholar
[6]
Bazhenov V Y, Vasnetsov M V, Soskin M S. Laser-beams with screw dislocations in their wavefronts. JETP Letters, 1990, 52(8): 429–431
[7]
Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J, Kloosterboer J G, ’t Hooft G W. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 2004, 43(3): 688–694
CrossRef Pubmed Google scholar
[8]
He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829
CrossRef Pubmed Google scholar
[9]
O’Neil A T, MacVicar I, Allen L, Padgett M J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601
CrossRef Pubmed Google scholar
[10]
Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914
CrossRef Pubmed Google scholar
[11]
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef Pubmed Google scholar
[12]
Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901–153904
CrossRef Pubmed Google scholar
[13]
Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Applied Physics Letters, 2006, 88(22): 221102
CrossRef Google scholar
[14]
Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230
CrossRef Pubmed Google scholar
[15]
McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Applied Optics, 1998, 37(3): 469–472
CrossRef Pubmed Google scholar
[16]
Kumar R, Singh Mehta D, Sachdeva A, Garg A, Senthilkumaran P, Shakher C. Generation and detection of optical vortices using all fiber-optic system. Optics Communications, 2008, 281(13): 3414–3420
CrossRef Google scholar
[17]
Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics, 2008, 4(4): 282–286
CrossRef Google scholar
[18]
Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
CrossRef Pubmed Google scholar
[19]
Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Physical Review Letters, 2002, 88(1): 013601 doi:10.1103/PhysRevLett.88.013601
Pubmed
[20]
Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Physical Review Letters, 2002, 89(24): 240401
CrossRef Pubmed Google scholar
[21]
Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25 Pt 1): 257901
CrossRef Pubmed Google scholar
[22]
Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501
CrossRef Pubmed Google scholar
[23]
Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Applied Physics Letters, 2007, 90(26): 261114
CrossRef Google scholar
[24]
Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 2009, 103(1): 013601
CrossRef Pubmed Google scholar
[25]
Nagali E, Sciarrino F, De Martini F, Piccirillo B, Karimi E, Marrucci L, Santamato E. Polarization control of single photon quantum orbital angular momentum states. Optics Express, 2009, 17(21): 18745–18759
CrossRef Pubmed Google scholar
[26]
Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(12): 720–723
CrossRef Google scholar
[27]
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef Pubmed Google scholar
[28]
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
CrossRef Pubmed Google scholar
[29]
Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
CrossRef Pubmed Google scholar
[30]
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef Pubmed Google scholar
[31]
Bomzon Z, Kleiner V, Hasman E. Pancharatnam—Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters, 2001, 26(18): 1424–1426
CrossRef Pubmed Google scholar
[32]
Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220
CrossRef Pubmed Google scholar
[33]
Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183
CrossRef Pubmed Google scholar
[34]
Fontaine N K, Doerr C R, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference, 2012, paper OTu1l.2
[35]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[36]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef Pubmed Google scholar
[37]
Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
CrossRef Pubmed Google scholar
[38]
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef Pubmed Google scholar
[39]
Matsko A B, Savchenkov A A, Strekalov D, Maleki L. Whispering gallery resonators for studying orbital angular momentum of a photon. Physical Review Letters, 2005, 95(14): 143904
CrossRef Pubmed Google scholar
[40]
Cai X, Huang D, Zhang X. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Optics Express, 2006, 14(23): 11304–11311
CrossRef Pubmed Google scholar
[41]
Yue Y, Huang H, Ahmed N, Yan Y, Ren Y, Xie G, Rogawski D, Tur M, Willner A E. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Optics Letters, 2013, 38(23): 5118–5121
CrossRef Pubmed Google scholar
[42]
Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
CrossRef Google scholar
[43]
Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
CrossRef Pubmed Google scholar
[44]
Li H, Strain M J, Meriggi L, Chen L, Zhu J, Cicek K, Wang J, Cai X, Sorel M, Thompson M G, Yu S. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams. Applied Physics Letters, 2015, 107(5): 051102
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/