Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 170-176     DOI: 10.1007/s12200-015-0480-4
RESEARCH ARTICLE |
Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography
Jian GAO1,Xiao PENG1,Peng LI2,*(),Zhihua DING2,Junle QU1(),Hanben NIU1
1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
Download: PDF(3392 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simultaneously. In recent decades, spectral domain Doppler optical coherence tomography (OCT) has been applied to observe three-dimensional (3D) vascular distribution. In this study, we developed a spectral domain optical coherence tomography system (SD-OCT) using super luminescent diode (SLD) as light source. The center wavelength of SLD is 835 nm with a 45-nm bandwidth. Theoretically, the transverse resolution, axial resolution and penetration depth of this SD-OCT system are 6.13 μm, 6.84 μm and 3.62 mm, respectively. By imaging mouse model with dorsal skin window chamber, we obtained a series of real-time OCT images and reconstructed 3D images of the specific area inside the dorsal skin window chamber by Amira. As a result, we can obtain the clear and complex distribution images of blood vessels of mouse model.

Keywords optical coherence tomography (OCT)      mouse      dorsal skin window chamber      vascular distribution     
Corresponding Authors: Peng LI   
Just Accepted Date: 11 March 2015   Online First Date: 01 April 2015    Issue Date: 24 June 2015
 Cite this article:   
Peng LI,Zhihua DING,Junle QU, et al. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-015-0480-4
http://journal.hep.com.cn/foe/EN/Y2015/V8/I2/170
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng LI
Zhihua DING
Junle QU
Hanben NIU
Jian GAO
Xiao PENG
Fig.1  Schematic diagram of spectral-domain OCT system. CMOS: complementary metal oxide semiconductor; PC: personal computer
Fig.2  Output spectrum curve of the optical source
Fig.3  Dorsal skin window chamber model
Fig.4  Vascular distribution images of dorsal skin window chamber mouse model. (a) Real-time OCT image; (b) 3D image of the vascular distribution; (c) and (d) blood vessel distributions at two different depths, which are 80 and 320 μm, respectively. Scale bar in (a) is 300 μm in longitudinal direction, while the scale bar in transverse direction is 100 μm. Scale bars in (b), (c) and (d) are 100 μm
1 Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181
doi: 10.1126/science.1957169 pmid: 1957169
2 Fujimoto J G, Brezinski M E, Tearney G J, Boppart S A, Bouma B, Hee M R, Southern J F, Swanson E A. Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1995, 1(9): 970–972
doi: 10.1038/nm0995-970 pmid: 7585229
3 de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28(21): 2067–2069
doi: 10.1364/OL.28.002067 pmid: 14587817
4 Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003, 11(8): 889–894
doi: 10.1364/OE.11.000889 pmid: 19461802
5 Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189
doi: 10.1364/OE.11.002183 pmid: 19466106
6 Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1-2): 43–48
doi: 10.1016/0030-4018(95)00119-S
7 Golubovic B, Bouma B E, Tearney G J, Fujimoto J G. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Optics Letters, 1997, 22(22): 1704–1706
doi: 10.1364/OL.22.001704 pmid: 18188341
8 Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 1997, 22(5): 340–342
doi: 10.1364/OL.22.000340 pmid: 18183195
9 Chen Z, Zhao Y, Srinivas S M, Nelson J S, Prakash N, Frostig R D. Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1134–1142
10 Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, Optical Physics, 1992, 9(6): 903–908
doi: 10.1364/JOSAB.9.000903
11 Xu C, Ye J, Marks D L, Boppart S A. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters, 2004, 29(14): 1647–1649
doi: 10.1364/OL.29.001647 pmid: 15309847
12 Divetia A, Hsieh T, Zhang J, Chen Z, Bachman M, Li G. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902
13 Xiang S H, Chen Z, Zhao Y, Nelson J S. Multichannel signal detection of optical coherence tomography with different frequency bands. In: Proceedings of Conference on Lasers and Electro-Optics. 2000, 418
14 Rollins A M, Yazdanfar S, Barton J K, Izatt J A. Real-time in vivo color Doppler optical coherence tomography. Journal of Biomedical Optics, 2002, 7(1): 123–129
doi: 10.1117/1.1428291 pmid: 11818020
15 Wiesauer K, Pircher M, G?tzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Optics Express, 2005, 13(3): 1015–1024
doi: 10.1364/OPEX.13.001015 pmid: 19494965
16 Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998, 3(6): 239–250
doi: 10.1364/OE.3.000239 pmid: 19384366
17 Shao Y, He Y, Ma H, Wang S, Zhang Y. Study on mildew infecting skin of naked mouse by optical coherence tomography. Acta Laser Biology Sinica, 2006, 15(5): 536–539 (in Chinese)
18 Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography. Journal of Physics D, Applied Physics, 2005, 38(15): 2519–2535
doi: 10.1088/0022-3727/38/15/002
19 Swanson E A, Izatt J A, Hee M R, Huang D, Lin C P, Schuman J S, Puliafito C A, Fujimoto J G. In vivo retinal imaging by optical coherence tomography. Optics Letters, 1993, 18(21): 1864–1866
doi: 10.1364/OL.18.001864 pmid: 19829430
20 Zhao Y, Chen Z, Saxer C, Xiang S, de Boer J F, Nelson J S. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters, 2000, 25(2): 114–116
doi: 10.1364/OL.25.000114 pmid: 18059800
21 Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer J F, Nelson J S. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Optics Letters, 2000, 25(18): 1358–1360
doi: 10.1364/OL.25.001358 pmid: 18066216
22 Westphal V, Yazdanfar S, Rollins A M, Izatt J A. Real-time, high velocity-resolution color Doppler optical coherence tomography. Optics Letters, 2002, 27(1): 34–36
doi: 10.1364/OL.27.000034 pmid: 18007707
23 Yang V X D, Gordon M, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson B, Vitkin I. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Optics Express, 2003, 11(14): 1650–1658
doi: 10.1364/OE.11.001650 pmid: 19466043
24 Ding Z, Zhao Y, Ren H, Nelson J, Chen Z. Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express, 2002, 10(5): 236–245
doi: 10.1364/OE.10.000236 pmid: 19436351
25 Yazdanfar S, Rollins A M, Izatt J A. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Optics Letters, 2000, 25(19): 1448–1450
doi: 10.1364/OL.25.001448 pmid: 18066244
26 Yazdanfar S, Rollins A M, Izatt J A.In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Archives of Ophthalmology, 2003, 121(2): 235–239
doi: 10.1001/archopht.121.2.235 pmid: 12583790
27 Nassif N, Cense B, Park B H, Yun S H, Chen T C, Bouma B E, Tearney G J, de Boer J F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 2004, 29(5): 480–482
doi: 10.1364/OL.29.000480 pmid: 15005199
28 Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express, 2003, 11(23): 3116–3121
doi: 10.1364/OE.11.003116 pmid: 19471434
29 White B, Pierce M, Nassif N, Cense B, Park B, Tearney G, Bouma B, Chen T, de Boer J. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Optics Express, 2003, 11(25): 3490–3497
doi: 10.1364/OE.11.003490 pmid: 19471483
30 Chen T C, Cense B, Pierce M C, Nassif N, Park B H, Yun S H, White B R, Bouma B E, Tearney G J, de Boer J F. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Archives of Ophthalmology, 2005, 123(12): 1715–1720
doi: 10.1001/archopht.123.12.1715 pmid: 16344444
31 Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Optics Express, 2006, 14(17): 7821–7840
doi: 10.1364/OE.14.007821 pmid: 19529151
32 Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A. Three dimensional optical angiography. Optics Express, 2007, 15(7): 4083–4097
doi: 10.1364/OE.15.004083 pmid: 19532651
33 Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine, 2009, 15(10): 1219–1223
doi: 10.1038/nm.1971 pmid: 19749772
34 Cardon S Z, Oestermeyer C F, Bloch E H. Effect of oxygen on cyclic red blood cell flow in unanesthetized mammalian striated muscle as determined by microscopy. Microvascular Research, 1970, 2(1): 67–76
doi: 10.1016/0026-2862(70)90052-X pmid: 5523915
35 Sandison J C. The transparent chamber of the rabbit’s ear, giving a complete description of improved technic of construction and introduction, and general account of growth and behavior of living cells and tissues as seen with the microscope. American Journal of Anatomy, 1928, 41(3): 447–473
doi: 10.1002/aja.1000410303
36 Laschke M W, Menger M D. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Human Reproduction Update, 2007, 13(4): 331–342
doi: 10.1093/humupd/dmm006 pmid: 17347159
37 Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain R K. Time-dependent vascular regression and permeability changes in established human tumor Xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceeding of the National Academy of Sciences, 1996, 93(25): 14765–14770
38 Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1993
39 Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27(20): 1800–1802
doi: 10.1364/OL.27.001800 pmid: 18033368
40 Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express, 2004, 12(10): 2156–2165
doi: 10.1364/OPEX.12.002156 pmid: 19475051
41 Zhou J. Experimental observation on mice using dose phenobarbital sodium. Shanghai Laboratory Animal Science, 1988, 3: 139 (in Chinese)
Related articles from Frontiers Journals
[1] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[2] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[3] Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
[4] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed