Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography
Jian GAO, Xiao PENG, Peng LI, Zhihua DING, Junle QU, Hanben NIU
Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography
Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simultaneously. In recent decades, spectral domain Doppler optical coherence tomography (OCT) has been applied to observe three-dimensional (3D) vascular distribution. In this study, we developed a spectral domain optical coherence tomography system (SD-OCT) using super luminescent diode (SLD) as light source. The center wavelength of SLD is 835 nm with a 45-nm bandwidth. Theoretically, the transverse resolution, axial resolution and penetration depth of this SD-OCT system are 6.13 µm, 6.84 µm and 3.62 mm, respectively. By imaging mouse model with dorsal skin window chamber, we obtained a series of real-time OCT images and reconstructed 3D images of the specific area inside the dorsal skin window chamber by Amira. As a result, we can obtain the clear and complex distribution images of blood vessels of mouse model.
optical coherence tomography (OCT) / mouse / dorsal skin window chamber / vascular distribution
[1] |
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181
CrossRef
Pubmed
Google scholar
|
[2] |
Fujimoto J G, Brezinski M E, Tearney G J, Boppart S A, Bouma B, Hee M R, Southern J F, Swanson E A. Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1995, 1(9): 970–972
CrossRef
Pubmed
Google scholar
|
[3] |
de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28(21): 2067–2069
CrossRef
Pubmed
Google scholar
|
[4] |
Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003, 11(8): 889–894
CrossRef
Pubmed
Google scholar
|
[5] |
Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189
CrossRef
Pubmed
Google scholar
|
[6] |
Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1-2): 43–48
CrossRef
Google scholar
|
[7] |
Golubovic B, Bouma B E, Tearney G J, Fujimoto J G. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Optics Letters, 1997, 22(22): 1704–1706
CrossRef
Pubmed
Google scholar
|
[8] |
Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 1997, 22(5): 340–342
CrossRef
Pubmed
Google scholar
|
[9] |
Chen Z, Zhao Y, Srinivas S M, Nelson J S, Prakash N, Frostig R D. Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1134–1142
|
[10] |
Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, Optical Physics, 1992, 9(6): 903–908
CrossRef
Google scholar
|
[11] |
Xu C, Ye J, Marks D L, Boppart S A. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters, 2004, 29(14): 1647–1649
CrossRef
Pubmed
Google scholar
|
[12] |
Divetia A, Hsieh T, Zhang J, Chen Z, Bachman M, Li G. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902
|
[13] |
Xiang S H, Chen Z, Zhao Y, Nelson J S. Multichannel signal detection of optical coherence tomography with different frequency bands. In: Proceedings of Conference on Lasers and Electro-Optics. 2000, 418
|
[14] |
Rollins A M, Yazdanfar S, Barton J K, Izatt J A. Real-time in vivo color Doppler optical coherence tomography. Journal of Biomedical Optics, 2002, 7(1): 123–129
CrossRef
Pubmed
Google scholar
|
[15] |
Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Optics Express, 2005, 13(3): 1015–1024
CrossRef
Pubmed
Google scholar
|
[16] |
Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998, 3(6): 239–250
CrossRef
Pubmed
Google scholar
|
[17] |
Shao Y, He Y, Ma H, Wang S, Zhang Y. Study on mildew infecting skin of naked mouse by optical coherence tomography. Acta Laser Biology Sinica, 2006, 15(5): 536–539 (in Chinese)
|
[18] |
Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography. Journal of Physics D, Applied Physics, 2005, 38(15): 2519–2535
CrossRef
Google scholar
|
[19] |
Swanson E A, Izatt J A, Hee M R, Huang D, Lin C P, Schuman J S, Puliafito C A, Fujimoto J G. In vivo retinal imaging by optical coherence tomography. Optics Letters, 1993, 18(21): 1864–1866
CrossRef
Pubmed
Google scholar
|
[20] |
Zhao Y, Chen Z, Saxer C, Xiang S, de Boer J F, Nelson J S. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters, 2000, 25(2): 114–116
CrossRef
Pubmed
Google scholar
|
[21] |
Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer J F, Nelson J S. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Optics Letters, 2000, 25(18): 1358–1360
CrossRef
Pubmed
Google scholar
|
[22] |
Westphal V, Yazdanfar S, Rollins A M, Izatt J A. Real-time, high velocity-resolution color Doppler optical coherence tomography. Optics Letters, 2002, 27(1): 34–36
CrossRef
Pubmed
Google scholar
|
[23] |
Yang V X D, Gordon M, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson B, Vitkin I. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Optics Express, 2003, 11(14): 1650–1658
CrossRef
Pubmed
Google scholar
|
[24] |
Ding Z, Zhao Y, Ren H, Nelson J, Chen Z. Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express, 2002, 10(5): 236–245
CrossRef
Pubmed
Google scholar
|
[25] |
Yazdanfar S, Rollins A M, Izatt J A. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Optics Letters, 2000, 25(19): 1448–1450
CrossRef
Pubmed
Google scholar
|
[26] |
Yazdanfar S, Rollins A M, Izatt J A.In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Archives of Ophthalmology, 2003, 121(2): 235–239
CrossRef
Pubmed
Google scholar
|
[27] |
Nassif N, Cense B, Park B H, Yun S H, Chen T C, Bouma B E, Tearney G J, de Boer J F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 2004, 29(5): 480–482
CrossRef
Pubmed
Google scholar
|
[28] |
Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express, 2003, 11(23): 3116–3121
CrossRef
Pubmed
Google scholar
|
[29] |
White B, Pierce M, Nassif N, Cense B, Park B, Tearney G, Bouma B, Chen T, de Boer J. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Optics Express, 2003, 11(25): 3490–3497
CrossRef
Pubmed
Google scholar
|
[30] |
Chen T C, Cense B, Pierce M C, Nassif N, Park B H, Yun S H, White B R, Bouma B E, Tearney G J, de Boer J F. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Archives of Ophthalmology, 2005, 123(12): 1715–1720
CrossRef
Pubmed
Google scholar
|
[31] |
Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Optics Express, 2006, 14(17): 7821–7840
CrossRef
Pubmed
Google scholar
|
[32] |
Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A. Three dimensional optical angiography. Optics Express, 2007, 15(7): 4083–4097
CrossRef
Pubmed
Google scholar
|
[33] |
Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine, 2009, 15(10): 1219–1223
CrossRef
Pubmed
Google scholar
|
[34] |
Cardon S Z, Oestermeyer C F, Bloch E H. Effect of oxygen on cyclic red blood cell flow in unanesthetized mammalian striated muscle as determined by microscopy. Microvascular Research, 1970, 2(1): 67–76
CrossRef
Pubmed
Google scholar
|
[35] |
Sandison J C. The transparent chamber of the rabbit’s ear, giving a complete description of improved technic of construction and introduction, and general account of growth and behavior of living cells and tissues as seen with the microscope. American Journal of Anatomy, 1928, 41(3): 447–473
CrossRef
Google scholar
|
[36] |
Laschke M W, Menger M D. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Human Reproduction Update, 2007, 13(4): 331–342
CrossRef
Pubmed
Google scholar
|
[37] |
Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain R K. Time-dependent vascular regression and permeability changes in established human tumor Xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceeding of the National Academy of Sciences, 1996, 93(25): 14765–14770
|
[38] |
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1993
|
[39] |
Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27(20): 1800–1802
CrossRef
Pubmed
Google scholar
|
[40] |
Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express, 2004, 12(10): 2156–2165
CrossRef
Pubmed
Google scholar
|
[41] |
Zhou J. Experimental observation on mice using dose phenobarbital sodium. Shanghai Laboratory Animal Science, 1988, 3: 139 (in Chinese)
|
/
〈 | 〉 |