Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 359-375     DOI: 10.1007/s12200-014-0470-y
REVIEW ARTICLE |
Recent progresses on optical arbitrary waveform generation
Ming LI1,*(),José AZA?A2,Ninghua ZHU1,Jianping YAO3
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2. Institut National de la Recherche Scientifique - énergie, Matériaux et Télécommunications (INRS-EMT) 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
3. Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Canada
Download: PDF(3867 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews recent progresses on optical arbitrary waveform generation (AWG) techniques, which could be used to break the speed and bandwidth bottlenecks of electronics technologies for waveform generation. The main enabling techniques for optically generating optical and microwave waveforms are introduced and reviewed in this paper, such as wavelength-to-time mapping techniques, space-to-time mapping techniques, temporal pulse shaping (TPS) system, optoelectronics oscillator (OEO), programmable optical filters, optical differentiator and integrator and versatile electro-optic modulation implementations. The main advantages and challenges of these optical AWG techniques are also discussed.

Keywords optical arbitrary waveform generation (AWG)      wavelength-to-time mapping      optoelectronics oscillator (OEO)      temporal pulse shaping (TPS) system      optical differentiator and integrator      electro-optic modulation     
Corresponding Authors: Ming LI   
Online First Date: 25 August 2014    Issue Date: 09 September 2014
 Cite this article:   
Ming LI,José AZA?A,Ninghua ZHU, et al. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0470-y
http://journal.hep.com.cn/foe/EN/Y2014/V7/I3/359
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming LI
José AZA?A
Ninghua ZHU
Jianping YAO
Fig.1  Schematic showing of a microwave arbitrary waveform generation (AWG) system based on optical spectral shaping and wavelength-to-time mapping (SS-WTT) technique
Fig.2  Schematic of a chirped microwave waveform generator using a TFBG based on spectral shaping and wavelength-to-time mapping (SS-WTT) mapping. MLL: mode-locked laser; TFBG: tilted fiber Bragg grating; PD: photodetector [51]
Fig.3  (a) A temporal interferometer for a chirped microwave waveform generation. An LCFBG is incorporated in the interferometer, and a DCF is used to stretch the two pulse from the interferometer. (b) Experimental result (ΔL = 4 cm): the generated linearly chirped microwave waveform (solid+ red line) and the instantaneous frequency (blue dots) (1) without pumping, and (2) with optical pumping. Dashed line: linear curve fitting of the instantaneous frequency. Experimental results (ΔL = 0 cm): the generated linearly chirped microwave waveform (solid+ red line) and the instantaneous frequency (blue dots) (3) without pumping, and (4) with optical pumping. Dashed line: linear curve fitting of the instantaneous frequency. LCFBG: linearly chirped fiber Bragg grating, LD: laser diode; MLL: mode-locked laser; ATT: attenuator; DL: delay line; OSC: oscilloscope; PD: photodetector; DCF: dispersion compensating fiber; OC: optical circulator [60]
Fig.4  Schematic showing of an arbitrary waveform generation (AWG) system based on direct space-to-time (DST) techniques: (a) based on free space optics; (b) based on fiber Bragg gratings (FBGs) and long period gratings (LPGs) [55]
Fig.5  Simulated (a) and experimentally (b) measured output time-domain amplitude (solid blue curves) and phase (solid green curves) responses of the fabricated long period gratings (LPGs) [55]
Fig.6  Schematic showing of an arbitrary waveform generation (AWG) techniques based on a temporal pulse shaping (TPS) system. MZM: Mach-Zehnder modulator
Fig.7  Experimental setup of a temporal pulse shaping (TPS) -based symmetric arbitrary waveform generation (AWG) sytem. AWG: arbitrary waveform generator; MLL: mode-locked laser; SMF: single mode fiber; EDFA: erbium-doped fiber amplifier; MZM: Mach-Zehnder modulator; DCF: dispersion compensating fiber; SO: sampling oscilloscope; PD: photodetector [63]
Fig.8  (a) Target optical waveform at the output of the Mach-Zehnder modulator (MZM) and the calculated modulation signal; (b) measured spectrum of the optical signal at the output of the MZM and its fitting curve with the square of a Sinc function; (c) simulated waveform at the output of the dispersion compensating fiber (DCF) and its autocorrelation; (d) measured autocorrelation (solid line) at the output of the DCF, the recovered waveform (dotted line) from the measured optical autocorrelation, and its simulated autocorrelation (dashed line) [63]
Fig.9  (a) Schematic showing of a proposed unbalanced temporal pulse shaping (TPS) system for chirped microwave pulse generation; (b) generated chirped microwave waveform with different chirp rates. MLL: mode locked laser; DE1: the first dispersive element; MZM: Mach-Zehnder modulator; DE2: the second dispersive element; DE3: the third dispersive element; PD: photodetector [64]
Fig.10  Schematic showing of an OEO for microwave waveform generation. MZM: Mach-Zehnder modulator; PD: photodetector; EA: electrical amplifier
Fig.11  Schematic diagram of the proposed frequency-tunable optoelectronic oscillator (OEO). MZM: Mach-Zehnder modulator; PD: photodetector; EA: electrical amplifier [68]
Fig.12  (a) Electrical spectrum of the generated 4.09 GHz microwave signal. The frequency span is 10 GHz and the resolution bandwidth (RBW) is 1 MHz. The inset gives a zoom-in view of the 4.09 GHz microwave signal; (b) phase noise measurement of the generated 4.09 GHz microwave signal [68]
Fig.13  Schematic showing of optical arbitrary waveform generation (AWG) system based on (a) a liquid crystal on silicon (LCOS)-based programmable optical signal processor; (b) in-phase/quadrature (IQ) modulation of an optical frequency comb [69]
Fig.14  Experimental setup for Airy pulses generation based on a programmable optical filter. The plot in the pulse shaper schematically shows the cubic phase structure wrapped between -π and π where the circle indicates its center. Experimental results (blue solid curve) and theoretical prediction (red dashed curve) of frequency shift control in (a) large-effective area?fibers (LEAFs) and (b) dispersion shifted fibers (DSFs); (c) and (d) plot the positions of the spectral notch and peak relative to the center of the cubic phase structure, corresponding to (a) and (b), respectively. EDFA: erbium doped fiber amplifier; OSA: optical spectrum analyzer [70]
Fig.15  (a) Scheme of the experimental set-up for LCOS-based programmable optical filtering of a frequency comb from a silicon nitride microring; (b) experimental results of the optical arbitrary waveform generation (AWG) [96]. FPC: fiber polarization controller; μring: silicon nitride microring; EDFA: erbium doped fiber amplifier; OSA, optical spectrum analyzer
Fig.16  Schematic showing of the input and output signals of an optical differentiator and integrator
Fig.17  Part of the fabricated on-chip complemeritary metal-oxide semiconductor?(CMOS)-compatible Mach-Zehnder interferometer (MZI) based optical differentiator and the experimental results. (a) Transmission spectrum and (b) its zoom-in view of the fabricated MZI; (c) spectral magnitude and (d) phase responses along one of the device’s resonances; (e) optical spectrum of an optical pulse before and after the optical differentiator; (f) generated flat-top pulse [75]
Fig.18  (a) Schematic diagram of a wavelength-selective directional coupler; (b) magnitude and phase responses of the fabricated directional coupler; (c.1) spectra of a femtosecond pulse before and after propagation through the fabricated directional coupler when the pulse carrier wavelength is shifted from the central resonance wavelength by ~8 nm; (c.2) time-domain intensity profiles of the input pulse, the measured output pulse and the numerical ideal output [75]
Fig.19  (a) Schematic showing of the proposed binary phase-coded microwave signal generation system; illustration of operation principle in (b) frequency domain and (c) polarization domain. TLs: tunable lasers; EOPM: electro-optic phase modulator; MSG: microwave signal generator; POF: programmable optical filter; EDFA: erbium doped fiber amplifier; PC: polarization controller; POLM: polarization modulator; BERT: bit error rate tester; EA: electrical amplifier; PM-FBG: polarization maintaining fiber Bragg grating; PD: photodetector; OSC: oscilloscope; PS: polarization state [94]
Fig.20  (a) Generated 18-GHz binary phase-coded signal; (b) recovered phase information from the binary phase-coded microwave signal in (a); (c) binary phase-coded signals and (d) calculated autocorrelation of the signal with a carrier frequency of 18 GHz [94]
1 Win M, Scholtz R. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 2000, 48(4): 679–689
doi: 10.1109/26.843135
2 Daniels R, Heath R Jr. 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2007, 2(3): 41–50
doi: 10.1109/MVT.2008.915320
3 Lee J, Nguyen C, Scullion T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements. IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1502–1509
doi: 10.1109/TIM.2004.827308
4 Weiner A. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments, 2000, 71(5): 1929–1960
doi: 10.1063/1.1150614
5 Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583
doi: 10.1109/LPT.2003.809309
6 Lin I, McKinney J, Weiner A. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave and Wireless Components Letters, 2005, 15(4): 226–228
doi: 10.1109/LMWC.2005.845698
7 Farhang M, Salehi J A. Spread-time/time-hopping UWB CDMA communication. In: Proceedings of IEEE International Symposium on Communications and Information Technology (ISCIT). 2004, 2: 1047–1050
8 Hamidi E, Weiner A. Phase-only matched filtering of ultrawideband arbitrary microwave waveforms via optical pulse shaping. Journal of Lightwave Technology, 2008, 26(15): 2355–2363
doi: 10.1109/JLT.2008.927175
9 McKinney J, Lin I, Weiner A. Shaping the power spectrum of ultra-wideband radio-frequency signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4247–4255
doi: 10.1109/TMTT.2006.885573
10 Liu Y, Park S, Weiner A. Terahertz waveform synthesis via optical pulse shaping. IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(3): 709–719
doi: 10.1109/2944.571771
11 Miyamoto D, Mandai K, Kurokawa T, Takeda S, Shioda T, Tsuda H. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photonics Technology Letters, 2006, 18(5): 721–723
doi: 10.1109/LPT.2006.870080
12 Takiguchi K, Okamoto K, Takahashi H, Shibata T. Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit. Electronics Letters, 2004, 40(9): 537–538
doi: 10.1049/el:20040359
13 Pan S, Yao J. IR-UWB over fiber systems compatible with WDM-PON networks. Journal of Lightwave Technology, 2011, 29(20): 3025–3034
doi: 10.1109/JLT.2011.2165275
14 Lin J, Lu C L, Chuang H P, Kuo F M, Shi J W, Huang C B, Pan C L. Photonic generation and detection of W-band chirped millimeter-wave pulses for radar. IEEE Photonics Technology Letters, 2012, 24(16): 1437–1439
doi: 10.1109/LPT.2012.2205914
15 Shabani M, Akbari M. Simultaneous microwave chirped pulse generation and antenna beam steering. Progress in Electromagnetics Research, 2012, 22: 137–148
doi: 10.2528/PIERM11090906
16 Shi J W, Kuo F, Chen N, Set S, Huang C, Bowers J. Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band. IEEE Photonics Journal, 2012, 4(1): 215–223
doi: 10.1109/JPHOT.2012.2183119
17 Deng Y, Li M, Huang N, Zhu N. Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating. Photonics Journal, 2014, (in press)
18 Zou X, Li M, Pan W, Luo B, Yan L, Shao L. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator. Optics Express, 2014, 22(9): 11129–11139
doi: 10.1364/OE.22.011129 pmid: 24921811
19 Deng Y, Li M, Huang N, Wang H, Zhu N. Optical length change measurement based on an incoherent single bandpass microwave photonic filter with high resolution. Photonics Research, 2014, 2(4): B35
doi: 10.1364/PRJ.2.000B35
20 Deng Y, Li M, Huang N, Azana J, Zhu N. Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser. Chinese Science Bulletin, 2014, 59(22): 2693–2701
doi: 10.1007/s11434-014-0381-8
21 Guo J J, Li M, Deng Y, Huang N, Liu J, Zhu N. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. Optics Express, 2014, 22(4): 4290–4300
doi: 10.1364/OE.22.004290 pmid: 24663752
22 Zou X, Li M, Ge W, Pan W, Luo B, Yan L, Aza?a J. Synthesis of fiber Bragg gratings with arbitrary stationary power/field distribution. IEEE Journal of Quantum Electronics, 2014, 50(3): 186–197
doi: 10.1109/JQE.2014.2302322
23 Wang H, Zheng J Y, Li W, Wang L X, Li M, Xie L, Zhu N H. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source. Optics Letters, 2013, 38(22): 4857–4860
doi: 10.1364/OL.38.004857 pmid: 24322150
24 Zheng J, Zhu N, Wang L, Li M, Wang H, Li W, Qi X, Liu J. Spectral sculpting of chaotic-UWB signals using a dual-loops optoelectronic oscillator. IEEE Photonics Technology Letters, 2013, 25(24): 2397–2400
doi: 10.1109/LPT.2013.2286395
25 Zou X, Li M, Pan W, Yan L, Aza?a J, Yao J. All-fiber optical filter with an ultranarrow and rectangular spectral response. Optics Letters, 2013, 38(16): 3096–3098
doi: 10.1364/OL.38.003096 pmid: 24104658
26 Li B, Li M, Lou S, Aza?a J. Linear optical pulse compression based on temporal zone plates. Optics Express, 2013, 21(14): 16814–16830
doi: 10.1364/OE.21.016814 pmid: 23938532
27 Malacarne A, Ashrafi R, Li M, LaRochelle S, Yao J, Aza?a J. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Optics Letters, 2012, 37(8): 1355–1357
doi: 10.1364/OL.37.001355 pmid: 22513684
28 Li W, Li M, Yao J. A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1287–1296
doi: 10.1109/TMTT.2012.2187678
29 Liu W, Li M, Wang C, Yao J. Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology, 2011, 29(9): 1239–1247
doi: 10.1109/JLT.2011.2123081
30 Shahoei H, Li M, Yao J. Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating. IEEE/OSA. Journal of Lightwave Technology, 2011, 29(10): 1465–1472
doi: 10.1109/JLT.2011.2132754
31 Li Z, Wang C, Li M, Chi H, Zhang X, Yao J. Instantaneous microwave frequency measurement using a special fiber Bragg grating. IEEE Microwave Theory and Wireless Component Letters, 2011, 21(1): 52–54
doi: 10.1109/LMWC.2010.2091114
32 Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586
doi: 10.1109/JLT.2012.2222348
33 Minasian R. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832–846
doi: 10.1109/TMTT.2005.863060
34 Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
doi: 10.1109/JLT.2007.906820
35 Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736
doi: 10.1016/j.optcom.2011.02.069
36 Wang C, Yao J. Fiber Bragg gratings for microwave photonics subsystems. Optics Express, 2013, 21(19): 22868–22884
doi: 10.1364/OE.21.022868 pmid: 24104174
37 Torres-Company V, Metcalf A J, Leaird D E, Weiner A M. Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping. IEEE Photonics Technology Letters, 2012, 24(11): 891–893
doi: 10.1109/LPT.2012.2190054
38 Shahoei H, Yao J. Continuously tunable chirped microwave waveform generation using a tilted fiber Bragg grating written in an erbium/ytterbium codoped fiber. IEEE Photonics Journal, 2012, 4(3): 765–771
doi: 10.1109/JPHOT.2012.2197605
39 Jiang H, Yan L, Ye J, Pan W, Luo B, Zou X. Photonic generation of microwave signals with tunabilities. Chinese Science Bulletin, 2014, 59(22): 2672–2683
doi: 10.1007/s11434-014-0450-z
40 Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Aza?a J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147
doi: 10.1364/OE.21.025120 pmid: 24150355
41 Wang C, Yao J. Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(2): 542–553
doi: 10.1109/TMTT.2007.914639
42 Wang C, Yao J. Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating. IEEE Photonics Technology Letters, 2012, 24(17): 1493–1495
doi: 10.1109/LPT.2012.2206580
43 Zhang F, Ge X, Pan S, Yao J. Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping. Optics Letters, 2013, 38(20): 4256–4259
doi: 10.1364/OL.38.004256 pmid: 24321973
44 Zhang F, Ge X, Pan S. Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping. Photonics Research, 2014, 2(4): B5–B10
doi: 10.1364/PRJ.2.0000B5
45 Rashidinejad A, Weiner A.Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability. Journal of Lightwave Technology, 2014, PP(99): 1
doi: 10.1109/JLT.2014.2331491
46 Yao J, Zhang J, Asghari M H. Time-bandwidth product expansion of microwave waveforms using anamorphic stretch transform. In: Proceedings of CLEO: QELS_Fundamental Science. 2014, JTh2A.38
47 Wang C, Zeng F, Yao J. All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion. IEEE Photonics Technology Letters, 2007, 19(3): 137–139
doi: 10.1109/LPT.2006.888966
48 Chi H, Zeng F, Yao J. Photonic generation of microwave signals based on pulse shaping. IEEE Photonics Technology Letters, 2007, 19(9): 668–670
doi: 10.1109/LPT.2007.894979
49 Wang C, Yao J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2008, 20(11): 882–884
doi: 10.1109/LPT.2008.922333
50 Chi H, Yao J. All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(9): 1958–1963
doi: 10.1109/TMTT.2007.904084
51 Li M, Shao L, Albert J, Yao J. Tilted fiber Bragg grating for chirped microwave waveform generation. IEEE Photonics Technology Letters, 2011, 23(5): 314–316
doi: 10.1109/LPT.2010.2102013
52 Leaird D E, Weiner A M. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration. Optics Letters, 2004, 29(13): 1551–1553
doi: 10.1364/OL.29.001551 pmid: 15259743
53 McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Optics Letters, 2002, 27(15): 1345–1347
doi: 10.1364/OL.27.001345 pmid: 18026445
54 Ashrafi R, Li M, Azana J. Multi-TBaud optical coding based on superluminal space-to-time mapping in long period gratings. Scientific Research, 2013, 3(2): 126–130
55 Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Aza?a J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421
doi: 10.1364/OL.38.001419 pmid: 23632504
56 Ashrafi R, Li M, Aza?a J. Tsymbol/s optical coding based on long period gratings. IEEE Photonics Technology Letters, 2013, 25(10): 910–913
doi: 10.1109/LPT.2013.2255034
57 Ashrafi R, Li M, Aza?a J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics Journal, 2013, 5(2): 7100311
doi: 10.1109/JPHOT.2013.2256117
58 Ashrafi R, Li M, LaRochelle S, Aza?a J. Superluminal space-to-time mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21(5): 6249–6256
doi: 10.1364/OE.21.006249 pmid: 23482194
59 Chi H, Yao J. Symmetrical waveform generation based on temporal pulse shaping using an amplitude-only modulator. Electronics Letters, 2007, 43(7): 415–417
doi: 10.1049/el:20073808
60 Li M, Yao J. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3531–3537
doi: 10.1109/TMTT.2011.2169078
61 Li M, Yao J. All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2011, 23(20): 1439–1441
doi: 10.1109/LPT.2011.2162624
62 Han Y, Li Z, Pan S, Li M, Yao J. Photonic-assisted tunable microwave pulse fractional Hilbert transformer based on a temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(9): 570–572
doi: 10.1109/LPT.2011.2116113
63 Li M, Han Y, Pan S, Yao J. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(11): 715–717
doi: 10.1109/LPT.2011.2132122
64 Li M, Wang C, Li W, Yao J. An unbalanced temporal pulse shaping system for chirped microwave waveform generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2968–2975
doi: 10.1109/TMTT.2010.2079070
65 Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photonics Technology Letters, 2010, 22(17): 1285–1287
doi: 10.1109/LPT.2010.2053351
66 Li W, Yao J. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop. Journal of Lightwave Technology, 2014: 1
doi: 10.1109/JLT.2014.2309392
67 Huang N, Li M, Deng Y, Zhu N. Optical pulse generation based on an optoelectronic oscillator with cascaded nonlinear semiconductor optical amplifiers. Photonics Journal, 2014, 6(1): 5500208-1–5500208-8
68 Li M, Li W, Yao J. A tunable optoelectronic oscillator based on a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technology Letters, 2012, 24(14): 1251–1253
doi: 10.1109/LPT.2012.2201462
69 Scott R P, Fontaine N K, Heritage J P, Yoo S J. Dynamic optical arbitrary waveform generation and measurement. Optics Express, 2010, 18(18): 18655–18670
doi: 10.1364/OE.18.018655 pmid: 20940758
70 Hu Y, Li M, Bongiovanni D, Clerici M, Yao J, Chen Z, Aza?a J, Morandotti R. Spectrum to distance mapping via nonlinear Airy pulses. Optics Letters, 2013, 38(3): 380–382
doi: 10.1364/OL.38.000380 pmid: 23381444
71 Li M, Jeong H S, Aza?a J, Ahn T J. 25-terahertz-bandwidth all-optical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280
doi: 10.1364/OE.20.028273 pmid: 23263061
72 Liu W, Li M, Guzzon R, Norberg E, Parker J, Coldren L, Yao J. Photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator. Journal of Lightwave Technology, 2014: 1
doi: 10.1109/JLT.2014.2323249
73 Huang N, Li M, Ashrafi R, Wang L, Wang X, Aza?a J, Zhu N. Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window. Optics Express, 2014, 22(3): 3105–3116
doi: 10.1364/OE.22.003105 pmid: 24663601
74 Fernandez M, Li M, Dastmalchi M, Carballar A, LaRochelle S, Aza?a J. Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38(8): 1–3
pmid: 23282818
75 Li M, Dumais P, Ashrafi R, Bazargani H, Quéléne J, Callender C, Aza?a J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389
doi: 10.1109/LPT.2012.2203335
76 Li M, Yao J. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a two-dimensional array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(15): 1319–1321
doi: 10.1109/LPT.2012.2202316
77 Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(17): 2506–2511
doi: 10.1109/JLT.2011.2159827
78 Li M, Shao L, Albert J, Yao J. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253
doi: 10.1109/LPT.2010.2098475
79 Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559–1561
doi: 10.1109/LPT.2010.2066964
80 Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225
doi: 10.1364/OL.35.000223 pmid: 20081975
81 Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807
doi: 10.1364/OE.17.019798 pmid: 19997201
82 Liu W, Yao J. Photonic generation of arbitrary microwave waveforms based on a polarization modulator in a Sagnac loop. Journal of Lightwave Technology, 2014, (accepted)
83 Xiang P, Zheng X, Zhang H, Li Y, Chen Y. A novel approach to photonic generation of RF binary digital modulation signals. Optics Express, 2013, 21(1): 631–639
doi: 10.1364/OE.21.000631 pmid: 23388956
84 Liu X, Pan W, Zou X, Zheng D, Yan L, Luo B, Lu B. Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing. Journal of Lightwave Technology, 2014, PP(99): 1
doi: 10.1109/JLT.2014.2313349
85 Xiang P, Zheng X, Zhang H, Li Y, Wang R. Photonic generation of BFSK RF signals based on optical pulse shaping. Optoelectronics Letters, 2012, 8(5): 368–371
doi: 10.1007/s11801-012-2253-2
86 Chi H, Yao J. An approach to photonic generation of high-frequency phase-coded RF pulses. IEEE Photonics Technology Letters, 2007, 19(10): 768–770
doi: 10.1109/LPT.2007.895898
87 Chi H, Yao J. Photonic generation of phase-coded millimeter-wave signal using a polarization modulator. IEEE Microwave and Wireless Components Letters, 2008, 18(5): 371–373
doi: 10.1109/LMWC.2008.922136
88 Li W, Wang L X, Zheng J Y, Li M, Zhu N H. Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method. IEEE Photonics Journal, 2013, 5(5): 5502007
doi: 10.1109/JPHOT.2013.2284260
89 Li W, Wang L X, Li M, Zhu N H. Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses. Optics Letters, 2013, 38(17): 3441–3444
doi: 10.1364/OL.38.003441 pmid: 23988979
90 Li W, Wang L X, Li M, Zhu N H. Single phase modulator for binary phase-coded microwave signals generation with large carrier frequency tunability. IEEE Photonics Technology Letters, 2013, 25(19): 1867–1870
doi: 10.1109/LPT.2013.2278277
91 Li W, Wang L X, Zheng J Y, Li M, Zhu N H. Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion. IEEE Photonics Technology Letters, 2013, 25(19): 1875–1878
doi: 10.1109/LPT.2013.2278867
92 Li W, Wang L X, Li M, Wang H, Zhu N H. Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach-Zehnder modulator. IEEE Photonics Journal, 2013, 5(4): 5501507
doi: 10.1109/JPHOT.2013.2274771
93 Fernández-Ruiz M R, Li M, Aza?a J. Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes. Optics Express, 2013, 21(8): 10314–10323
doi: 10.1364/OE.21.010314 pmid: 23609741
94 Li M, Li Z, Yao J P. Photonic generation of a precisely pi phase shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters, 2012, 24(22): 2001–2004
doi: 10.1109/LPT.2012.2217486
95 Li Z, Li M, Chi H, Zhang X, Yao J. Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694–696
doi: 10.1109/LMWC.2011.2170673
96 Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4(2): 117–122
doi: 10.1038/nphoton.2009.266
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed