Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 320-337     DOI: 10.1007/s12200-014-0469-4
A review of recent progress in plasmon-assisted nanophotonic devices
Jian WANG()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(2957 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics.

In this review article, we give a brief overview of our recent progress in plasmon-assisted nanophotonic devices and their wide applications, including long-range hybrid plasmonic slot (LRHPS) waveguide, ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality (Q) factor and small mode volume, compact active hybrid plasmonic ring resonator for deep-subwavelength lasing applications, fabricated hybrid plasmonic waveguides for terabit-scale photonic interconnection, and metamaterials-based broadband and selective generation of orbital angular momentum (OAM) carrying vector beams. It is believed that plasmonics opens possible new ways to facilitate next chip-scale key devices and frontier technologies.

Keywords plasmonics      surface plasmon polariton (SPP)      nanophotonic devices      plasmonic waveguide      photonic interconnection      metamaterials     
Corresponding Authors: Jian WANG   
Online First Date: 25 August 2014    Issue Date: 09 September 2014
 Cite this article:   
Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  Typical operation speed and critical device dimension of different chip-scale device technologies (plasmonics, photonics, electronics and the past)
Fig.2  Schematic illustration of field distribution of surface plasmon polariton (SPP) at the interface between a conductor (metal) and a dielectric
Fig.3  Illustration of surface science enabled waveguides (slot, hybrid plasmonic, long-range hybrid plasmonic, long-range DMD, MDM) with their super modes hybridized from the surface modes at the high-contrast-index dielectric-dielectric interface or/and at the metal-dielectric interface. DMD: dielectric-metal-dielectric; MDM: metal-dielectric-metal
Fig.4  Schematic illustration of 3-D structure of the long-range hybrid plasmonic slot (LRHPS) waveguide [31]
Fig.5  Schematic structures of (a) traditional dielectric-metal-dielectric (DMD) waveguide, (d) vertical slot waveguide, (f) proposed long-range hybrid plasmonic slot (LRHPS) waveguide, and distributions of main transverse electric field component Ex for (b) long-range surface plasmon polariton (SPP) mode and (c) short-range SPP mode of DMD waveguide, (e) vertical slot mode of vertical slot waveguide, (g) long-range hybrid (LRH) mode and (h) short-range hybrid (SRH) mode of LRHPS waveguide. The curves sketched in (b), (c), (e), (g) and (h) show the Ex(x,0) distribution in the waveguides. The arrows plotted in the mode field represent the direction and relative amplitude of transverse electric field component Ex [31]
Fig.6  Normalized phase and attenuation constants of the long-range hybrid (LRH) and short-range hybrid (SRH) modes of long-range hybrid plasmonic slot (LRHPS) waveguide. The dotted line corresponds to a conventional hybrid plasmonic waveguide (a silver, a Si-nc slot and a Si strip from left to right on a silica substrate) with a metal width of 300 nm [31]
Fig.7  (a) 3D structure illustration of the designed plasmonic microresonator; (b) energy density distribution and contour plot under certain geometrical parameters [32]
Fig.8  (a) Schematic illustration of 3D structure for the designed active hybrid plasmonic ring resonator; (b) cross section of the hybrid plasmonic ring resonator; energy flux density distributions and contour plots for the hybrid plasmonic (HP) mode (c) and fundamental photonic (PH) mode (d); normalized energy flux density for the HP mode along y direction (e) and r direction (f) [33]
Fig.9  Gap height (Hg) dependence of the Q factor and mode volume at a resonance in the lasing wavelength band of CdS for the hybrid plasmonic (HP) mode and fundamental photonic (PH) mode (Rc = 100 nm, Rr = 800 nm) [33]
Fig.10  Cross section radius (Rc) dependence of (a) effective refractive index (neff) and (b) resonance wavelength for the hybrid plasmonic (HP) and fundamental photonic (PH) modes (Hg = 10 nm, Rr = 800 nm) [33]
Fig.11  Ring radius Rr dependence of (a) Qtotal, Qrad, Qabs, mode volume and (b) Purcell factor and threshold gain for the HP mode (Hg = 5 nm, Rc = 50 nm) [33]
Fig.12  (a) Structure of hybrid plasmonic waveguide; electric field distributions in cross section of the waveguide at (b)WSi = 500 nm and (c) WSi = 300 nm, respectively; (d) evolution of electric field distribution propagating along the waveguide; (e) scanning electron microscopy (SEM) image of fabricated hybrid plasmonic waveguide [34]
Fig.13  (a) Schematic structure of metamaterials for generating orbital angular momentum (OAM)-carrying vector beams; (b) geometric parameters: the radii are ri = (i + 6.3) × 700 nm (i = 0, 1) and the orientation angle is α(φ) = lφ + α0 (l = 2, α0 = 0 as an example) with respect to the x axis. The rectangular aperture has a dimension of 600 nm × 140 nm; (c) illustration of generating OAM-carrying vector beam (OAM charge number: 2, polarization order: 2) [35]
Fig.14  Spatial distributions of phase, power and polarization of generated orbital angular momentum (OAM)-carrying vector beams (σ = 1: left circularly polarized input beam, σ0 = 0: along the direction of e1(φ)) [35]
Fig.15  Wavelength-dependent (a) extinction ratio (ER) and (b) purity for the generation of orbital angular momentum (OAM)-carrying vector beams. Insets in (b) show weight as functions of OAM charge number (left) and polarization order number (right) at 1550 nm [35]
Fig.16  (a) Schematic structure of metamaterials; (b) geometric parameters: the radius of the ring is ri = (2i + 0.3) × 700 nm, where i = 1, 2 and 3. The rectangular aperture has dimensions of 600 nm × 140 nm and an orientation angle of αi(φ) = iφ + αi0 with respect to the x axis [36]
Fig.17  (a) Wavelength-dependent extinction ratio for three OAM-carrying vector beams; (b) dependence of extinction ratio on the initial orientation angle α20 (second ring); (c) spatial distributions of phase, power components and polarization [36]
1 Brongersma M L, Hartman J W, Atwater H H. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. MRS Proceedings, 1999, 582: H10.5
2 Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27
doi: 10.1016/S1369-7021(06)71572-3
3 Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
doi: 10.1126/science.1114849 pmid: 16410515
4 Brongersma M L, Shalaev V M. Applied physics. The case for plasmonics. Science, 2010, 328(5977): 440–441
doi: 10.1126/science.1186905 pmid: 20413483
5 Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
doi: 10.1038/nmat2630 pmid: 20168343
6 Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539–554
doi: 10.1103/PhysRev.182.539
7 Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(8): 5186–5201
doi: 10.1103/PhysRevB.33.5186 pmid: 9939016
8 Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer-Verlag, 1988
9 Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830
doi: 10.1038/nature01937 pmid: 12917696
10 Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Physics Today, 2008, 61(5): 44–50
doi: 10.1063/1.2930735
11 Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
doi: 10.1038/nphoton.2009.282
12 Zhang J, Zhang L. Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4(2): 157–321
doi: 10.1364/AOP.4.000157
13 Han Z, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 2013, 76(1): 016402
doi: 10.1088/0034-4885/76/1/016402 pmid: 23249644
14 Oulton R F, Bartal G, Pile D F P, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10(10): 105018
doi: 10.1088/1367-2630/10/10/105018
15 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America), 2007, JThD112
16 Alam M Z, Aitchison J S, Mojahedi M. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser & Photonics Reviews, 2014, 8(3): 394–408
doi: 10.1002/lpor.201300168
17 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
doi: 10.1038/nphoton.2008.131
18 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
doi: 10.1038/nature08364 pmid: 19718019
19 Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators. B, Chemical, 1999, 54(1–2): 3–15
doi: 10.1016/S0925-4005(98)00321-9
20 Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics, 2009, 1(3): 484–588
doi: 10.1364/AOP.1.000484
21 Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
doi: 10.1364/OPEX.13.006645 pmid: 19498679
22 Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
doi: 10.1364/OE.17.016646 pmid: 19770880
23 Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
doi: 10.1364/OE.18.017958 pmid: 20721182
24 Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808–2813
doi: 10.1364/OE.18.002808 pmid: 20174109
25 Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
doi: 10.1364/OE.19.008379 pmid: 21643089
26 Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439
doi: 10.1364/OE.21.001430 pmid: 23389124
27 Bian Y, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920
doi: 10.1364/OE.21.023907 pmid: 24104301
28 Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Optics Express, 2013, 21(24): 29544–29557
doi: 10.1364/OE.21.029544 pmid: 24514506
29 Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
doi: 10.1063/1.3437088
30 Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544
doi: 10.1364/OE.20.020535 pmid: 23037100
31 Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311
doi: 10.1109/JPHOT.2013.2256887
32 Xiang C, Wang J, Chan C K. Ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality factor and small mode volume. In: Proceedings of CLEO: Science and Innovations. Optical Society of America, 2013, JTu4A. 59
33 Xiang C, Chan C K, Wang J. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications. Scientific Reports, 2014, 4: 3720
doi: 10.1038/srep03720 pmid: 24430254
34 Du J, Gui C, Li C, Yang Q, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO: Applications and Technology. Optical Society of America, 2014, JTh2A. 35
35 Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934
doi: 10.1364/OL.38.000932 pmid: 23503264
36 Zhao Z, Wang J, Li S, Willner A E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In: Proceedings of CLEO: QELS Fundamental Science. Optical Society of America, 2013, QM4A. 7
37 Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
doi: 10.1103/PhysRev.106.874
38 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
doi: 10.1364/OL.29.001209 pmid: 15209249
39 Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
doi: 10.1038/nphoton.2009.25
40 Spano R, Galan J V, Sanchis P, Martinez A, Marti J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals.In: Proceedings of 5th IEEE International Conference on Group IV Photonics. IEEE, 2008, 314–316
41 Berini P. Figures of merit for surface plasmon waveguides. Optics Express, 2006, 14(26): 13030–13042
doi: 10.1364/OE.14.013030 pmid: 19532198
42 Martínez A, Blasco J, Sanchis P, Galán J V, García-Rupérez J, Jordana E, Gautier P, Lebour Y, Hernández S, Guider R, Daldosso N, Garrido B, Fedeli J M, Pavesi L, Martí J, Spano R. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters, 2010, 10(4): 1506–1511
doi: 10.1021/nl9041017 pmid: 20356059
43 Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
doi: 10.1038/nature01939 pmid: 12917698
44 Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1209–1218
doi: 10.1109/TMTT.2007.897850
45 Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370–4379
doi: 10.1103/PhysRevB.6.4370
46 Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald A, Mahajan V N, Van Stryland E W. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. New York: McGraw-Hill, Inc., 2009
47 Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Applied Physics Letters, 2010, 96(4): 043109
doi: 10.1063/1.3294300
48 Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, N?tzel R, Smit M K. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1(10): 589–594
doi: 10.1038/nphoton.2007.171
49 Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110–1112
doi: 10.1038/nature08318 pmid: 19684572
50 Xiao Y F, Li B B, Jiang X, Hu X, Li Y, Gong Q. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 2010, 43(3): 035402
doi: 10.1088/0953-4075/43/3/035402
51 Zhu L. Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technology Letters, 2010, 22(8): 535–537
doi: 10.1109/LPT.2010.2041923
52 Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920
doi: 10.1021/nl050440u pmid: 15884894
53 Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
doi: 10.1103/PhysRevA.45.8185 pmid: 9906912
54 Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
doi: 10.1002/lpor.200810007
55 Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
56 Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
doi: 10.1364/OPEX.12.005448 pmid: 19484105
57 Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
doi: 10.1038/nphoton.2012.138
58 Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 1996, 21(23): 1948–1950
doi: 10.1364/OL.21.001948 pmid: 19881855
59 Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
60 Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Physical Review Letters, 2006, 96(23): 233901
doi: 10.1103/PhysRevLett.96.233901 pmid: 16803379
61 Kang M, Chen J, Gu B, Li Y, Vuong L T, Wang H T. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85(3): 035801
doi: 10.1103/PhysRevA.85.035801
62 Poon A W, Luo X, Chen H, Fernandes G E, Chang R K. Microspiral resonators for integrated photonics. Optics and Photonics News, 2008, 19(10): 48–53
doi: 10.1364/OPN.19.10.000048
Related articles from Frontiers Journals
[1] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[2] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[3] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[4] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[5] Yinghui GUO, Lianshan YAN, Wei PAN, Bin LUO, Xiantao ZHANG, Xiangang LUO. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
[6] Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO. Polarization properties in helical metamaterials[J]. Front Optoelec, 2012, 5(3): 248-255.
[7] Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Front Optoelec, 2012, 5(1): 68-72.
[8] Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Front Optoelec, 2012, 5(1): 63-67.
[9] Xue FENG, Fang LIU, Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton[J]. Front Optoelec, 2012, 5(1): 51-62.
[10] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
Full text