A review of recent progress in plasmon-assisted nanophotonic devices
Jian WANG
A review of recent progress in plasmon-assisted nanophotonic devices
Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics.
In this review article, we give a brief overview of our recent progress in plasmon-assisted nanophotonic devices and their wide applications, including long-range hybrid plasmonic slot (LRHPS) waveguide, ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality (Q) factor and small mode volume, compact active hybrid plasmonic ring resonator for deep-subwavelength lasing applications, fabricated hybrid plasmonic waveguides for terabit-scale photonic interconnection, and metamaterials-based broadband and selective generation of orbital angular momentum (OAM) carrying vector beams. It is believed that plasmonics opens possible new ways to facilitate next chip-scale key devices and frontier technologies.
plasmonics / surface plasmon polariton (SPP) / nanophotonic devices / plasmonic waveguide / photonic interconnection / metamaterials
[1] |
Brongersma M L, Hartman J W, Atwater H H. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. MRS Proceedings, 1999, 582: H10.5
|
[2] |
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27
CrossRef
Google scholar
|
[3] |
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
CrossRef
Pubmed
Google scholar
|
[4] |
Brongersma M L, Shalaev V M. Applied physics. The case for plasmonics. Science, 2010, 328(5977): 440–441
CrossRef
Pubmed
Google scholar
|
[5] |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
CrossRef
Pubmed
Google scholar
|
[6] |
Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539–554
CrossRef
Google scholar
|
[7] |
Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(8): 5186–5201
CrossRef
Pubmed
Google scholar
|
[8] |
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer-Verlag, 1988
|
[9] |
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830
CrossRef
Pubmed
Google scholar
|
[10] |
Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Physics Today, 2008, 61(5): 44–50
CrossRef
Google scholar
|
[11] |
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
CrossRef
Google scholar
|
[12] |
Zhang J, Zhang L. Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4(2): 157–321
CrossRef
Google scholar
|
[13] |
Han Z, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 2013, 76(1): 016402
CrossRef
Pubmed
Google scholar
|
[14] |
Oulton R F, Bartal G, Pile D F P, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10(10): 105018
CrossRef
Google scholar
|
[15] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America), 2007, JThD112
|
[16] |
Alam M Z, Aitchison J S, Mojahedi M. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser & Photonics Reviews, 2014, 8(3): 394–408
CrossRef
Google scholar
|
[17] |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef
Google scholar
|
[18] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
CrossRef
Pubmed
Google scholar
|
[19] |
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators. B, Chemical, 1999, 54(1–2): 3–15
CrossRef
Google scholar
|
[20] |
Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics, 2009, 1(3): 484–588
CrossRef
Google scholar
|
[21] |
Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
CrossRef
Pubmed
Google scholar
|
[22] |
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef
Pubmed
Google scholar
|
[23] |
Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
CrossRef
Pubmed
Google scholar
|
[24] |
Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808–2813
CrossRef
Pubmed
Google scholar
|
[25] |
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
CrossRef
Pubmed
Google scholar
|
[26] |
Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439
CrossRef
Pubmed
Google scholar
|
[27] |
Bian Y, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920
CrossRef
Pubmed
Google scholar
|
[28] |
Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Optics Express, 2013, 21(24): 29544–29557
CrossRef
Pubmed
Google scholar
|
[29] |
Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
CrossRef
Google scholar
|
[30] |
Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544
CrossRef
Pubmed
Google scholar
|
[31] |
Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311
CrossRef
Google scholar
|
[32] |
Xiang C, Wang J, Chan C K. Ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality factor and small mode volume. In: Proceedings of CLEO: Science and Innovations. Optical Society of America, 2013, JTu4A. 59
|
[33] |
Xiang C, Chan C K, Wang J. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications. Scientific Reports, 2014, 4: 3720
CrossRef
Pubmed
Google scholar
|
[34] |
Du J, Gui C, Li C, Yang Q, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO: Applications and Technology. Optical Society of America, 2014, JTh2A. 35
|
[35] |
Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934
CrossRef
Pubmed
Google scholar
|
[36] |
Zhao Z, Wang J, Li S, Willner A E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In: Proceedings of CLEO: QELS Fundamental Science. Optical Society of America, 2013, QM4A. 7
|
[37] |
Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
CrossRef
Google scholar
|
[38] |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef
Pubmed
Google scholar
|
[39] |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef
Google scholar
|
[40] |
Spano R, Galan J V, Sanchis P, Martinez A, Marti J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals.In: Proceedings of 5th IEEE International Conference on Group IV Photonics. IEEE, 2008, 314–316
|
[41] |
Berini P. Figures of merit for surface plasmon waveguides. Optics Express, 2006, 14(26): 13030–13042
CrossRef
Pubmed
Google scholar
|
[42] |
Martínez A, Blasco J, Sanchis P, Galán J V, García-Rupérez J, Jordana E, Gautier P, Lebour Y, Hernández S, Guider R, Daldosso N, Garrido B, Fedeli J M, Pavesi L, Martí J, Spano R. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters, 2010, 10(4): 1506–1511
CrossRef
Pubmed
Google scholar
|
[43] |
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
CrossRef
Pubmed
Google scholar
|
[44] |
Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1209–1218
CrossRef
Google scholar
|
[45] |
Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370–4379
CrossRef
Google scholar
|
[46] |
Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald A, Mahajan V N, Van Stryland E W. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. New York: McGraw-Hill, Inc., 2009
|
[47] |
Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Applied Physics Letters, 2010, 96(4): 043109
CrossRef
Google scholar
|
[48] |
Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Nötzel R, Smit M K. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1(10): 589–594
CrossRef
Google scholar
|
[49] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110–1112
CrossRef
Pubmed
Google scholar
|
[50] |
Xiao Y F, Li B B, Jiang X, Hu X, Li Y, Gong Q. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 2010, 43(3): 035402
CrossRef
Google scholar
|
[51] |
Zhu L. Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technology Letters, 2010, 22(8): 535–537
CrossRef
Google scholar
|
[52] |
Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920
CrossRef
Pubmed
Google scholar
|
[53] |
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
CrossRef
Pubmed
Google scholar
|
[54] |
Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
CrossRef
Google scholar
|
[55] |
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
|
[56] |
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef
Pubmed
Google scholar
|
[57] |
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef
Google scholar
|
[58] |
Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 1996, 21(23): 1948–1950
CrossRef
Pubmed
Google scholar
|
[59] |
Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
|
[60] |
Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Physical Review Letters, 2006, 96(23): 233901
CrossRef
Pubmed
Google scholar
|
[61] |
Kang M, Chen J, Gu B, Li Y, Vuong L T, Wang H T. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85(3): 035801
CrossRef
Google scholar
|
[62] |
Poon A W, Luo X, Chen H, Fernandes G E, Chang R K. Microspiral resonators for integrated photonics. Optics and Photonics News, 2008, 19(10): 48–53
CrossRef
Google scholar
|
/
〈 | 〉 |