A review of recent progress in plasmon-assisted nanophotonic devices

Jian WANG

PDF(2957 KB)
PDF(2957 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (3) : 320-337. DOI: 10.1007/s12200-014-0469-4
REVIEW ARTICLE
REVIEW ARTICLE

A review of recent progress in plasmon-assisted nanophotonic devices

Author information +
History +

Abstract

Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics.

In this review article, we give a brief overview of our recent progress in plasmon-assisted nanophotonic devices and their wide applications, including long-range hybrid plasmonic slot (LRHPS) waveguide, ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality (Q) factor and small mode volume, compact active hybrid plasmonic ring resonator for deep-subwavelength lasing applications, fabricated hybrid plasmonic waveguides for terabit-scale photonic interconnection, and metamaterials-based broadband and selective generation of orbital angular momentum (OAM) carrying vector beams. It is believed that plasmonics opens possible new ways to facilitate next chip-scale key devices and frontier technologies.

Keywords

plasmonics / surface plasmon polariton (SPP) / nanophotonic devices / plasmonic waveguide / photonic interconnection / metamaterials

Cite this article

Download citation ▾
Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices. Front. Optoelectron., 2014, 7(3): 320‒337 https://doi.org/10.1007/s12200-014-0469-4

References

[1]
Brongersma M L, Hartman J W, Atwater H H. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. MRS Proceedings, 1999, 582: H10.5
[2]
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27
CrossRef Google scholar
[3]
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
CrossRef Pubmed Google scholar
[4]
Brongersma M L, Shalaev V M. Applied physics. The case for plasmonics. Science, 2010, 328(5977): 440–441
CrossRef Pubmed Google scholar
[5]
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
CrossRef Pubmed Google scholar
[6]
Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539–554
CrossRef Google scholar
[7]
Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(8): 5186–5201
CrossRef Pubmed Google scholar
[8]
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer-Verlag, 1988
[9]
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830
CrossRef Pubmed Google scholar
[10]
Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Physics Today, 2008, 61(5): 44–50
CrossRef Google scholar
[11]
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
CrossRef Google scholar
[12]
Zhang J, Zhang L. Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4(2): 157–321
CrossRef Google scholar
[13]
Han Z, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 2013, 76(1): 016402
CrossRef Pubmed Google scholar
[14]
Oulton R F, Bartal G, Pile D F P, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10(10): 105018
CrossRef Google scholar
[15]
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America), 2007, JThD112
[16]
Alam M Z, Aitchison J S, Mojahedi M. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser & Photonics Reviews, 2014, 8(3): 394–408
CrossRef Google scholar
[17]
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef Google scholar
[18]
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
CrossRef Pubmed Google scholar
[19]
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators. B, Chemical, 1999, 54(1–2): 3–15
CrossRef Google scholar
[20]
Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics, 2009, 1(3): 484–588
CrossRef Google scholar
[21]
Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
CrossRef Pubmed Google scholar
[22]
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef Pubmed Google scholar
[23]
Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
CrossRef Pubmed Google scholar
[24]
Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808–2813
CrossRef Pubmed Google scholar
[25]
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
CrossRef Pubmed Google scholar
[26]
Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439
CrossRef Pubmed Google scholar
[27]
Bian Y, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920
CrossRef Pubmed Google scholar
[28]
Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Optics Express, 2013, 21(24): 29544–29557
CrossRef Pubmed Google scholar
[29]
Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
CrossRef Google scholar
[30]
Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544
CrossRef Pubmed Google scholar
[31]
Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311
CrossRef Google scholar
[32]
Xiang C, Wang J, Chan C K. Ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality factor and small mode volume. In: Proceedings of CLEO: Science and Innovations. Optical Society of America, 2013, JTu4A. 59
[33]
Xiang C, Chan C K, Wang J. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications. Scientific Reports, 2014, 4: 3720
CrossRef Pubmed Google scholar
[34]
Du J, Gui C, Li C, Yang Q, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO: Applications and Technology. Optical Society of America, 2014, JTh2A. 35
[35]
Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934
CrossRef Pubmed Google scholar
[36]
Zhao Z, Wang J, Li S, Willner A E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In: Proceedings of CLEO: QELS Fundamental Science. Optical Society of America, 2013, QM4A. 7
[37]
Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
CrossRef Google scholar
[38]
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef Pubmed Google scholar
[39]
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef Google scholar
[40]
Spano R, Galan J V, Sanchis P, Martinez A, Marti J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals.In: Proceedings of 5th IEEE International Conference on Group IV Photonics. IEEE, 2008, 314–316
[41]
Berini P. Figures of merit for surface plasmon waveguides. Optics Express, 2006, 14(26): 13030–13042
CrossRef Pubmed Google scholar
[42]
Martínez A, Blasco J, Sanchis P, Galán J V, García-Rupérez J, Jordana E, Gautier P, Lebour Y, Hernández S, Guider R, Daldosso N, Garrido B, Fedeli J M, Pavesi L, Martí J, Spano R. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters, 2010, 10(4): 1506–1511
CrossRef Pubmed Google scholar
[43]
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
CrossRef Pubmed Google scholar
[44]
Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1209–1218
CrossRef Google scholar
[45]
Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370–4379
CrossRef Google scholar
[46]
Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald A, Mahajan V N, Van Stryland E W. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. New York: McGraw-Hill, Inc., 2009
[47]
Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Applied Physics Letters, 2010, 96(4): 043109
CrossRef Google scholar
[48]
Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Nötzel R, Smit M K. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1(10): 589–594
CrossRef Google scholar
[49]
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110–1112
CrossRef Pubmed Google scholar
[50]
Xiao Y F, Li B B, Jiang X, Hu X, Li Y, Gong Q. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 2010, 43(3): 035402
CrossRef Google scholar
[51]
Zhu L. Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technology Letters, 2010, 22(8): 535–537
CrossRef Google scholar
[52]
Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920
CrossRef Pubmed Google scholar
[53]
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
CrossRef Pubmed Google scholar
[54]
Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
CrossRef Google scholar
[55]
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
[56]
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef Pubmed Google scholar
[57]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[58]
Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 1996, 21(23): 1948–1950
CrossRef Pubmed Google scholar
[59]
Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
[60]
Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Physical Review Letters, 2006, 96(23): 233901
CrossRef Pubmed Google scholar
[61]
Kang M, Chen J, Gu B, Li Y, Vuong L T, Wang H T. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85(3): 035801
CrossRef Google scholar
[62]
Poon A W, Luo X, Chen H, Fernandes G E, Chang R K. Microspiral resonators for integrated photonics. Optics and Photonics News, 2008, 19(10): 48–53
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 61222502, 61077051, 11274131 and L1222026), the National Basic Research Program of China (973 Program) (No. 2014CB340004), the Program for New Century Excellent Talents in University (NCET-11-0182), the Wuhan Science and Technology Plan Project (No. 2014070404010201), the Fundamental Research Funds of the Central Universities (HUST) (Nos. 2012YQ008 and 2013ZZGH003), and the seed project of Wuhan National Laboratory for Optoelectronics (WNLO).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2957 KB)

Accesses

Citations

Detail

Sections
Recommended

/