Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 81-92     DOI: 10.1007/s12200-014-0446-y
Terahertz pulse imaging in archaeology
J. Bianca JACKSON1,2,*(),Julien LABAUNE1,Rozenn BAILLEUL-LESUER3,Laura D'ALESSANDRO3,Alison WHYTE3,John W. BOWEN2,Michel MENU4,Gerard MOUROU1
1. Institute de la Lumière Extrême, Ecole Polytechnique, Palaiseau, France
2. School of Systems Engineering, University of Reading, Reading, UK
3. Oriental Institute, University of Chicago, Chicago, IL, USA
4. Centre de Recherche et de Restauration des Musées de France, Paris, France
Download: PDF(4129 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The work presented in this paper was performed at the Oriental Institute at the University of Chicago, on objects from their permanent collection: an ancient Egyptian bird mummy and three ancient Sumerian corroded copper-alloy objects. We used a portable, fiber-coupled terahertz (THz) time-domain spectroscopic imaging system, which allowed us to measure specimens in both transmission and reflection geometry, and present time- and frequency-based image modes. The results confirm earlier evidence that THz imaging can provide complementary information to that obtainable from X-ray computed tomography (XRCT) scans of mummies, giving better visualisation of low density regions. In addition, we demonstrated that THz imaging can distinguish mineralized layers in metal artifacts.

Keywords terahertz (THz)      time-domain imaging      spectroscopy      non-destructive evaluation      archaeology     
Corresponding Authors: J. Bianca JACKSON   
Just Accepted Date: 27 August 2014   Online First Date: 28 October 2014    Issue Date: 13 February 2015
 Cite this article:   
J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER, et al. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
E-mail this article
E-mail Alert
Articles by authors
Alison WHYTE
Michel MENU
Fig.1  Photograph of ancient Egyptian bird mummy (OIM E9164) [15]
Fig.2  Photo of corroded copper-alloy fragment cross-section [17]
Fig.3  Photographs of corroded copper-alloy (a) cup A (OIM A11280A, 12 cm diameter) and cup B (OIM A11399A, 10 cm diameter) [17]
Fig.4  Diagram of typical copper-based corrosion layers
Fig.5  Photographs of the (a) transmission [15] and (b) reflection setups
Fig.6  Air and foam support reference (a) time domain signal; (b) transmission spectra and (c) refractive index and absorption spectra for the foam support
Fig.7  Terahertz transmission image of bird mummy {color scale: white/yellow = higher transmission, black/violet = lower transmission}
Fig.8  Select (offset) time-domain waveforms from (a) torso region and (b) leg region; (c) spectral waveforms from bird mummy transmission signals
Fig.9  X-ray computed tomography scan of Egyptian bird mummy E9164 [14] {Courtesy of Charles Pelizzari and Christian Wietholt}
Fig.10  (a) Peak to peak amplitude terahertz reflection image; (b) cross-sectional b-scan image; and (c) select time-domain signals (offset) [17]
Fig.11  Transmission images calculated using THz pulse minimum peak amplitude for (a) cup A and (b) cup B {color scale, same: white/yellow = high transmission, black/violet = low transmission}
Fig.12  Minimum peak time-of-flight for transmission signals through (a) cup A and (b) cup B {color scale, same: white/yellow = shortest time-of-flight [132 ps], black/violet = longest time-of-flight [142 ps]}
Fig.13  (a) Transmission factor, h, map of cup B; (b) and (c) select frequency- and time-domain (inset) waveforms
Fig.14  Photographs of the bottom sides of (a) cup A and (b) cup B
Fig.15  (a) Terahertz pulse reflection minimum peak image of cup A {color scale: white/yellow = low reflection, black/violet = high reflection}; and (b) select cross-sectional b-scan, sliced at green line in (a)
Fig.16  (a) Terahertz pulse reflection minimum peak image of cup B {color scale: white/yellow = low reflection, black/violet = high reflection}; and (b) select cross-sectional b-scan, sliced at pink line in (a)
Fig.17  Frequency-domain power integration between 1.0 and 2.0 THz image of cup B {color scale: white/yellow = low reflection, black/violet = high reflection}
1 Jackson J B, Bowen J W, Walker G C, Labaune J, Mourou G A, Menu M, Fukunaga K. A survey of terahertz applications in cultural heritage conservation science. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 220–231
doi: 10.1109/TTHZ.2011.2159538
2 ? hrstr?m L, Bitzer A, Walther M, Rühli F J. Technical note: terahertz imaging of ancient mummies and bone. American Journal of Physical Anthropology, 2010, 142(3): 497–500
doi: 10.1002/ajpa.21292 pmid: 20544977
3 Fukunaga K, Cortes E, Cosentino A, Stünkel I, Leona M, Duling I N III, Mininberg D T. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy. Journal of the European Optical Society: Rapid Publications, 2011, 6: 11040
doi: 10.2971/jeos.2011.11040
4 Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews, 2004, 104(4): 1759–1779
doi: 10.1021/cr020685g pmid: 15080711
5 Dragoman D, Dragoman M. Terahertz fields and applications. Progress in Quantum Electronics, 2004, 28(1): 1–66
doi: 10.1016/S0079-6727(03)00058-2
6 Chamberlain J M. Where optics meets electronics: recent progress in decreasing the terahertz gap. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1815): 199–213
doi: 10.1098/rsta.2003.1312
7 Walker G C, Bowen J W, Matthews W, Roychowdhury S, Labaune J, Mourou G, Menu M, Hodder I, Jackson J B. Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in ?atalh?yük. Optics Express, 2013, 21(7): 8126–8134
doi: 10.1364/OE.21.008126 pmid: 23571902
8 Walker G C, Berry E, Zinovev N N, Fitzgerald A J, Miles R E, Chamberlain J M, Smith M A. Terahertz imaging and international safety guidelines. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4682: 683–690
doi: 10.1117/12.465614
9 Kristensen T T, Withayachumnankul W, Jepsen P U, Abbott D. Modeling terahertz heating effects on water. Optics Express, 2010, 18(5): 4727–4739
doi: 10.1364/OE.18.004727 pmid: 20389486
10 Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation. Reports on Progress in Physics, 2007, 70(8): 1325–1379
doi: 10.1088/0034-4885/70/8/R02
11 Adriaens A. European actions to promote and coordinate the use of analytical techniques for cultural heritage studies. TrAC Trends in Analytical Chemistry, 2004, 23(8): 583–586
doi: 10.1016/j.trac.2004.07.001
12 Tonouchi M. Galore new applications of terahertz science and technology. Terahertz Science and Technology, 2009, 2(3): 90–101 ?
doi: 10.11906/TST.090-101.2009.09.10
13 Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
doi: 10.1002/lpor.201000011
14 Pelizzari C A, Haney C R, Bailleul-LeSuer R, Brown J P, Wietholt C. Challenges in CT scanning of avian mummies. In: Bailleul-Lesuer R, ed. Between Heaven and Earth: Birds in Ancient Egypt. Chicago: Oriental Institute of the University of Chicago, 2012, 109–118
15 Jackson J B, Mourou G, Labaune J, Menu M. Terahertz pulse imaging of an Egyptian bird mummy. In: Bailleul-Lesuer R, ed. Between Heaven and Earth: Birds in Ancient Egypt. 1st ed. Chicago: Oriental Institute Museum Publications, 2012, 119–122
16 Luo W, Jin R, Qin Y, Huang F, Wang C. Analysis of the corrosion products of the ancient bronzes excavated from Qiaojiayuan tombs. Applied Physics Research, 2010, 2(2): 156–169
17 Jackson J B, Labaune J, Mourou G A, D’Alessandro L, Whyte A, Menu M. Pulsed terahertz investigation of corroded and mineralized copper alloy historical artifacts. In: Proceedings of 2011 International Conference on Infrared, Millimeter, and Terahertz Waves. Houston, USA: IEEE, 2011, 1–2
doi: 10.1109/irmmw-THz.2011.6104844
18 Anastasi R F, Madaras E I. Terahertz NDE for under paint corrosion detection and evaluation. AIP Conference Proceedings, 2006, 820: 515–522
doi: 10.1063/1.2184571
19 Fuse N, Fukuchi T, Takahashi T, Mizuno M, Fukunaga K. Evaluation of applicability of noncontact analysis methods to detect rust regions in coated steel plates. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 242–249
doi: 10.1109/TTHZ.2011.2178932
20 Zhao G, Ter Mors M, Wenckebach T, Planken P C M. Terahertz dielectric properties of polystyrene foam. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(6): 1476–1479
doi: 10.1364/JOSAB.19.001476
21 Banerjee D, von Spiegel W, Thomson M D, Schabel S, Roskos H G. Diagnosing water content in paper by terahertz radiation. Optics Express, 2008, 16(12): 9060–9066
doi: 10.1364/OE.16.009060
22 Roman C, Ichim O, Sarger L, Vigneras V, Mounaix P. Terahertz dielectric characterisation of polymethacrylimide rigid foam: the perfect sheer plate? Electronics Letters, 2004, 40(19): 1167–1169
doi: 10.1049/el:20045754
23 Fletcher J R, Swift G P, Dai D, Levitt J A, Chamberlain J M. Propagation of terahertz radiation through random structures: An alternative theoretical approach and experimental validation. Journal of Applied Physics, 2007, 101(1): 013102
doi: 10.1063/1.2403860
24 McKnight S W, Stewart K P, Drew H D, Moorjani K. Wavelength-independent anti-interference coating for the far-infrared. Infrared Physics, 1987, 27(5): 327–333
doi: 10.1016/0020-0891(87)90074-1
Related articles from Frontiers Journals
[1] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[2] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[3] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[4] Yuxiang WU,Tao SONG,Guodong XU. Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise[J]. Front. Optoelectron., 2015, 8(4): 451-455.
[5] A. A. BULANOVA,E. B. BUKREEVA,Yu. V. KISTENEV,O. Yu. NIKIFOROVA. Diagnostics of bronchopulmonary diseases through Mahalanobis distance-based absorption spectral analysis of exhaled air[J]. Front. Optoelectron., 2015, 8(2): 183-186.
[6] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[7] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[8] Honglei ZHAN,Fangli QIN,Wujun JIN,Li’na GE,Honglan LIU,Kun ZHAO. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
[9] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[10] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[11] Jingle LIU,Xi-Cheng ZHANG. Terahertz radiation-enhanced-emission-of-fluorescence[J]. Front. Optoelectron., 2014, 7(2): 156-198.
[12] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[13] I-Chen HO,Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Front. Optoelectron., 2014, 7(2): 220-242.
[14] Li JIANG, Aimiao QIN, Kunpeng JIANG, Lei LIAO, Xiulan WU, Chaojian WU. Preparation, structure and properties of fluorescent nano-CdTe/poly (1, 4–butanediol-citrate) bioelastomer nanocomposite in-situ dispersion technique[J]. Front Optoelec, 2013, 6(4): 452-457.
[15] Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Front Optoelec, 2013, 6(2): 228-233.
Full text