Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 27-43     DOI: 10.1007/s12200-014-0436-0
REVIEW ARTICLE |
Semiconductor activated terahertz metamaterials
Hou-Tong CHEN()
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Download: PDF(4006 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result in unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.

Keywords terahertz      metamaterials      semiconductor      modulation     
Corresponding Authors: Hou-Tong CHEN   
Online First Date: 31 July 2014    Issue Date: 13 February 2015
 Cite this article:   
Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0436-0
http://journal.hep.com.cn/foe/EN/Y2015/V8/I1/27
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hou-Tong CHEN
Fig.1  (a) A metamaterial composed of a periodic array of metal split-ring resonators, where the incident magnetic field perpendicular to the metal structure can excite a resonant magnetic response, resulting in (b) a negative magnetic permeability over a narrow frequency range above the resonance. Adapted from Ref. [2]
Fig.2  (a) A simple split-ring resonator unit cell repeating in x and y directions to form a planar THz metamaterial. P = 50 mm, A = 36 mm, w = 4 mm, g = 2 mm, and the substrate is intrinsic GaAs; (b) an equivalent circuit of the split-ring resonator when the incident THz waves are polarized along the gap-bearing arm; (c) resonant transmission spectrum of the planar metamaterial normalized by the plain GaAs substrate. Adapted from Ref. [33]
Fig.3  (a) A unit cell of a cross resonator array at the interface between two dielectric media; (b) schematic of the reflection and transmission at the metamaterial interface; (c) amplitude and (d) phase spectra of the complex S-parameters of the metamaterial interface corresponding to the reflection and transmission coefficients under normal incidence, where r 12 = | S 11 | , t 12 = n 1 / n 2 | S 21 | , r 21 = | S 22 | , and t 21 = n 2 / n 1 | S 12 | . Adapted from Ref. [45]
Fig.4  (a) Schematic of multireflection within a metamaterial absorber; (b) absorption spectra under normal incidence for three metamaterial absorber configurations consisting of I-shaped resonators that are indicated in the insets. Adapted from Ref.[56].
Fig.5  Experimentally measured reflectance and transmittance under nearly normal incidence to a metamaterial coated GaAs surface. The gray horizontal lines indicate the reflectance (32%) and transmittance (68%) at a plain GaAs surface. Inset: unit cell of the metamaterial antireflection coating. Adapted from Ref. [59]
Fig.6  Experimental results of broadband THz linear polarization rotators in reflection (a) and transmission (b). Adapted from Ref. [71]
Fig.7  THz transmission spectra of a planar split-ring resonator array fabricated on top of an intrinsic GaAs substrate under near-infrared femtosecond laser excitation with various powers. Adapted from Ref. [33]
Fig.8  (a) Optical microscopy images of the split-ring resonator array with silicon pads integrated at the split gaps; (b) THz transmission amplitude and (c) phase spectra under various powers of near-infrared femtosecond laser excitation. Adapted from Ref. [83]
Fig.9  Experimentally measured transmission spectra of the THz EIT metamaterial (unit cell shown in the inset) without (red curve) and with (blue curve) photoexcitation. Adapted from Ref. [85]
Fig.10  Scanning electron microscopy images of (a) an individual unit cell and (b) a square array of electric split-ring resonators where silicon strips were incorporated at the split gap; (c) experimentally measured THz transmission spectra at various photoexcitation power levels. Adapted from Ref.[87]
Fig.11  (a) Scanning electron microscopy image of the dynamically switchable chiral meta-molecule; (b) simulated transmission spectra of left (solid curves) and right (dashed curves) handed circular polarizations before (black curves) and after (red curves) near-infrared photoexcitation; (c) circular dichroism before (black curve) and after (red curve) photoexcitation. Adapted from Ref. [90]
Fig.12  (a) Design schematic of the electrically switchable THz metamaterial, which is an array of interconnected electric split-ring resonators fabricated on top of a thin layer of n-doped GaAs substrate; (b) THz transmission spectra (intensity) as a function of the applied reverse voltage bias. Adapted from Ref. [94]
Fig.13  Correlated transmission amplitude (a) and phase (b) spectra under various reverse voltage biases to an electrically switchable THz metamaterial; (c) THz modulation signal normalized to the incident THz spectrum under a square electrical signal alternating between 0 and -16 V. Adapted from Ref. [95]
Fig.14  (a) Schematic of the single unit cell of the HEMT based electronically controllable THz metamaterial modulator, where the HEMT is identified and lies under each split gap of the metamaterial; (b) frequency dependent transmitted THz electric field for the HEMT/metamaterial device as a function of voltage bias. Adapted from Ref. [97]
Fig.15  A unit cell illustrating an electric split-ring resonator array fabricated on top of the n-doped GaAs epilayer in the reverse biased state; (b) schematic showing a portion of the first four grating strips formed by interconnected electric split-ring resonators; (c) illustration of the entire metamaterial grating. The color profile illustrates that alternate columns are biased forming a diffraction grating, with each column being independently controlled by the voltage bias between its Schottky pads and the ohmic contacts. Adapted from Ref. [103]
Fig.16  Intensity spectra of the differential diffracted signal at the off-axis angle of 36° when applying an alternating voltage bias at 1 kHz to the device shown in Fig. 14. Adapted from Ref. [103]
1 Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and μ. Soviet Physics Uspekhi-USSR, 1968, 10(4): 509–514
doi: 10.1070/PU1968v010n04ABEH003699
2 Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
doi: 10.1109/22.798002
3 Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
doi: 10.1103/PhysRevLett.76.4773 pmid: 10061377
4 Wu D M, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
doi: 10.1063/1.1591083
5 Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
doi: 10.1103/PhysRevLett.84.4184 pmid: 10990641
6 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
doi: 10.1126/science.1058847 pmid: 11292865
7 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
doi: 10.1103/PhysRevLett.85.3966 pmid: 11041972
8 Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
doi: 10.1126/science.1108759 pmid: 15845849
9 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
doi: 10.1126/science.1125907 pmid: 16728597
10 Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
doi: 10.1126/science.1126493 pmid: 16728596
11 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
doi: 10.1126/science.1133628 pmid: 17053110
12 Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496
doi: 10.1126/science.1094025 pmid: 15001772
13 Moser H O, Casse B D F, Wilhelmi O, Saw B T. Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Physical Review Letters, 2005, 94(6): 063901
doi: 10.1103/PhysRevLett.94.063901 pmid: 15783730
14 Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353
doi: 10.1126/science.1105371 pmid: 15550664
15 Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358
doi: 10.1364/OL.30.003356 pmid: 16389830
16 Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404
doi: 10.1103/PhysRevLett.95.137404 pmid: 16197179
17 Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
doi: 10.1103/PhysRevLett.95.203901 pmid: 16384056
18 Chen H T, O’Hara J F, Azad A K, Taylor A J. Manipulation of terahertz radiation using metamaterials. Laser & Photonics Reviews, 2011, 5(4): 513–533
doi: 10.1002/lpor.201000043
19 Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5: 3055
doi: 10.1038/ncomms4055 pmid: 24402324
20 Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
doi: 10.1038/nmat708 pmid: 12618844
21 Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
doi: 10.1038/nphoton.2007.3
22 Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636
doi: 10.1364/OL.31.000634 pmid: 16570422
23 Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
doi: 10.1364/OE.15.001084 pmid: 19532336
24 Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543
doi: 10.1364/OE.16.006537 pmid: 18545357
25 Chiam S Y, Singh R, Gu J Q, Han J G, Zhang W L, Bettiol A A. Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009, 94(6): 064102
doi: 10.1063/1.3079419
26 Chiam S Y, Singh R, Zhang W L, Bettiol A A. Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters, 2010, 97(19): 191906
doi: 10.1063/1.3514248
27 O’Hara J F, Singh R, Brener I, Smirnova, Han J, Taylor A J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795
doi: 10.1364/OE.16.001786 pmid: 18542258
28 Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511
doi: 10.1063/1.2768300
29 Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402
doi: 10.1103/PhysRevLett.105.247402 pmid: 21231556
30 Katsarakis N, Konstantinidis G, Kostopoulos A, Penciu R S, Gundogdu T F, Kafesaki M, Economou E N, Koschny T, Soukoulis C M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Optics Letters, 2005, 30(11): 1348–1350
doi: 10.1364/OL.30.001348 pmid: 15981529
31 Quan B G, Xu X L, Yang H F, Xia X X, Wang Q, Wang L, Gu C Z, Li C, Li F. Time-resolved broadband analysis of split ring resonators in terahertz region. Applied Physics Letters, 2006, 89(4): 041101
doi: 10.1063/1.2220060
32 Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 2006, 14(19): 8827–8836
doi: 10.1364/OE.14.008827 pmid: 19529264
33 Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Physical Review Letters, 2006, 96(10): 107401
doi: 10.1103/PhysRevLett.96.107401 pmid: 16605787
34 Driscoll T, Andreev G O, Basov D N, Palit S, Ren T, Mock J, Cho S Y, Jokerst N M, Smith D R. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Applied Physics Letters, 2007, 90(9): 092508
doi: 10.1063/1.2679766
35 Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J, Averitt R D. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B, 2007, 75(4): 041102
doi: 10.1103/PhysRevB.75.041102
36 Padilla W J. Group theoretical description of artificial electromagnetic metamaterials. Optics Express, 2007, 15(4): 1639–1646
doi: 10.1364/OE.15.001639 pmid: 19532398
37 O’Hara J F, Smirnova E, Azad A K, Chen H-T, Taylor A J. Effects of microstructure variations on macroscopic terahertz metafilm properties. Active and Passive Electronic Components, 2007, 2007: 49691
38 O’Hara J F, Smirnova E, Chen H T, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Properties of planar electric metamaterials for novel terahertz applications. Journal of Nanoelectronics and Optoelectronics, 2007, 2(1): 90–95
doi: 10.1166/jno.2007.008
39 Azad A K, Taylor A J, Smirnova E, O’Hara J F. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Applied Physics Letters, 2008, 92(1): 011119
doi: 10.1063/1.2829791
40 Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401
doi: 10.1103/PhysRevLett.99.147401 pmid: 17930720
41 Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319
doi: 10.1364/OE.19.006312 pmid: 21451657
42 Munk B A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, 2000
43 Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617
doi: 10.1103/PhysRevE.71.036617 pmid: 15903615
44 Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35
doi: 10.1109/MAP.2012.6230714
45 Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172
doi: 10.1364/OE.20.007165 pmid: 22453398
46 Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
doi: 10.1103/PhysRevLett.100.207402 pmid: 18518577
47 Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188
doi: 10.1364/OE.16.007181 pmid: 18545422
48 Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104
doi: 10.1103/PhysRevB.79.125104
49 Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B, 2008, 78(24): 241103
doi: 10.1103/PhysRevB.78.241103
50 Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Physical Review B, 2009, 79(3): 033101
doi: 10.1103/PhysRevB.79.033101
51 Shchegolkov D Y, Azad A K, O’Hara J F, Simakov E I. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 2010, 82(20): 205117
doi: 10.1103/PhysRevB.82.205117
52 Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111
doi: 10.1063/1.3276072
53 Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America. B, 2010, 27(3): 498–504
doi: 10.1364/JOSAB.27.000498
54 Tao H, Bingham C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D. A dual band terahertz metamaterial absorber. Journal of Physics. D, 2010, 43(22): 225102
doi: 10.1088/0022-3727/43/22/225102
55 Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102
doi: 10.1063/1.4757879
56 Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters, 2012, 37(2): 154–156
doi: 10.1364/OL.37.000154 pmid: 22854451
57 Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J, Chen H T. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, 2012, 101(10): 101102
doi: 10.1063/1.4749823
58 Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X, Liu Y L. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Optics Express, 2009, 17(22): 20256–20265
doi: 10.1364/OE.17.020256 pmid: 19997251
59 Chen H T, Zhou J, O’Hara J F, Chen F, Azad A K, Taylor A J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901
doi: 10.1103/PhysRevLett.105.073901 pmid: 20868044
60 Chen H T, Zhou J F, O’Hara J F, Taylor A J. A numerical investigation of metamaterial antireflection coatings. Terahertz Science and Technology, 2010, 3(2): 66–73
61 Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Optics Express, 2009, 17(1): 136–149
doi: 10.1364/OE.17.000136 pmid: 19129881
62 Peralta X G, Smirnova E I, Azad A K, Chen H T, Taylor A J, Brener I, O’Hara J F. Metamaterials for THz polarimetric devices. Optics Express, 2009, 17(2): 773–783
doi: 10.1364/OE.17.000773 pmid: 19158890
63 Cong L Q, Cao W, Tian Z, Gu J Q, Han J G, Zhang W L. Manipulating polarization states of terahertz radiation using metamaterials. New Journal of Physics, 2012, 14(11): 115013
doi: 10.1088/1367-2630/14/11/115013
64 Zalkovskij M, Malureanu R, Kremers C, Chigrin D N, Novitsky A, Zhukovsky S, Tang P T, Jepsen P U, Lavrinenko A V. Optically active Babinet planar metamaterial film for terahertz polarization manipulation. Laser & Photonics Reviews, 2013, 7(5): 810–817
doi: 10.1002/lpor.201300034
65 Markovich D L, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko A V. Metamaterial polarization converter analysis: limits of performance. Applied Physics B, , 2013, 112(2): 143–152
doi: 10.1007/s00340-013-5383-8
66 Chiang Y J, Yen T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters, 2013, 102(1): 011129
doi: 10.1063/1.4774300
67 Weis P, Paul O, Imhof C, Beigang R, Rahm M. Strongly birefringent metamaterials as negative index terahertz wave plates. Applied Physics Letters, 2009, 95(17): 171104
doi: 10.1063/1.3253414
68 Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
doi: 10.1126/science.1210713 pmid: 21885733
69 Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials, 2013, 25(33): 4567–4572
doi: 10.1002/adma.201204850 pmid: 23787976
70 Neu J, Beigang R, Rahm M. Metamaterial-based gradient index beam steerers for terahertz radiation. Applied Physics Letters, 2013, 103(4): 041109
doi: 10.1063/1.4816345
71 Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307
doi: 10.1126/science.1235399 pmid: 23686344
72 Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L. A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103(17): 171107
doi: 10.1063/1.4826536
73 Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Reviews, 2014: Early View
74 Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J, Zhang Y. Ultrathin terahertz planar elements. Advanced Optical Materials, 2013, 1(2): 186–191
doi: 10.1002/adom.201200044
75 Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q, Zhang Y. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express, 2013, 21(24): 30030–30038
doi: 10.1364/OE.21.030030 pmid: 24514553
76 Burckel D B, Wendt J R, Ten Eyck G A, Ginn J C, Ellis A R, Brener I, Sinclair M B. Micrometer-scale cubic unit cell 3D metamaterial layers. Advanced Materials, 2010, 22(44): 5053–5057
doi: 10.1002/adma.201002429 pmid: 20941794
77 Randhawa J S, Gurbani S S, Keung M D, Demers D P, Leahy-Hoppa M R, Gracias D H. Three-dimensional surface current loops in terahertz responsive microarrays. Applied Physics Letters, 2010, 96(19): 191108
doi: 10.1063/1.3428657
78 Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
79 Moser H O, Rockstuhl C. 3D THz metamaterials from micro/nanomanufacturing. Laser & Photonics Reviews, 2012, 6(2): 219–244
doi: 10.1002/lpor.201000019
80 Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470(7334): 369–373
doi: 10.1038/nature09776 pmid: 21331038
81 Kadow C, Fleischer S B, Ibbetson J P, Bowers J E, Gossard A C, Dong J W, Palmstrom C J. Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Applied Physics Letters, 1999, 75(22): 3548–3550
doi: 10.1063/1.125384
82 Chen H T, Padilla W J, Zide J M O, Bank S R, Gossard A C, Taylor A J, Averitt R D. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 2007, 32(12): 1620–1622
doi: 10.1364/OL.32.001620 pmid: 17572725
83 Roy Chowdhury D, Singh R, O’Hara J F, Chen H T, Taylor A J, Azad A K. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Applied Physics Letters, 2011, 99(23): 231101
doi: 10.1063/1.3667197
84 Takano K, Shibuya K, Akiyama K, Nagashima T, Miyamaru F, Hangyo M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. Journal of Applied Physics, 2010, 107(2): 024907
doi: 10.1063/1.3284958
85 Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3: 1151
doi: 10.1038/ncomms2153 pmid: 23093188
86 Roy Chowdhury D, Singh R, Taylor A J, Chen H T, Azad A K. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Applied Physics Letters, 2013, 102(1): 011122
doi: 10.1063/1.4774003
87 Chen H T, O’Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295–298
doi: 10.1038/nphoton.2008.52
88 Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
doi: 10.1103/PhysRevB.79.161102
89 Shen N H, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
doi: 10.1103/PhysRevLett.106.037403 pmid: 21405297
90 Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 2012, 3: 942
doi: 10.1038/ncomms1908 pmid: 22781755
91 Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901
doi: 10.1103/PhysRevLett.102.023901 pmid: 19257274
92 Zhou J F, Chowdhury D R, Zhao R K, Azad A K, Chen H T, Soukoulis C M, Taylor A J, O’Hara J F. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Physical Review B, 2012, 86(3): 035448
doi: 10.1103/PhysRevB.86.035448
93 Fan K B, Zhao X G, Zhang J D, Geng K, Keiser G R, Seren H R, Metcalfe G D, Wraback M, Zhang X, Averitt R D. Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 702–708
doi: 10.1109/TTHZ.2013.2285619
94 Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
doi: 10.1038/nature05343 pmid: 17136089
95 Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
doi: 10.1038/nphoton.2009.3
96 Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O’Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Applied Physics Letters, 2008, 93(9): 091117
doi: 10.1063/1.2978071
97 Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Optics Express, 2011, 19(10): 9968–9975
doi: 10.1364/OE.19.009968 pmid: 21643254
98 Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648
doi: 10.1364/OE.16.007641 pmid: 18545471
99 Paul O, Imhof C, L?gel B, Wolff S, Heinrich J, H?fling S, Forchel A, Zengerle R, Beigang R, Rahm M. Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, 2009, 17(2): 819–827
doi: 10.1364/OE.17.000819 pmid: 19158896
100 Peralta X G, Brener I, Padilla W J, Young E W, Hoffman A J, Cich M J, Averitt R D, Wanke M C, Wright J B, Chen H T, O’Hara J F, Taylor A J, Waldman J, Goodhue W D, Li J, Reno J. External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials. Metamaterials, 2010, 4(2–3): 83–88
doi: 10.1016/j.metmat.2010.04.005
101 Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M. A spatial light modulator for terahertz beams. Applied Physics Letters, 2009, 94(21): 213511
doi: 10.1063/1.3147221
102 Shrekenhamer D, Montoya J, Krishna S, Padilla W J. Four-color metamaterial absorber THz spatial light modulator. Advanced Optical Materials, 2013, 1(12): 905–909
doi: 10.1002/adom.201300265
103 Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Applied Physics Letters, 2014, 104(9): 091115
doi: 10.1063/1.4867276
104 Fan K, Hwang H Y, Liu M, Strikwerda A C, Sternbach A, Zhang J, Zhao X, Zhang X, Nelson K A, Averitt R D. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Physical Review Letters, 2013, 110(21): 217404
doi: 10.1103/PhysRevLett.110.217404 pmid: 23745933
105 Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326
doi: 10.1126/science.1216022 pmid: 22422976
Related articles from Frontiers Journals
[1] Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
[2] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[3] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[4] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[5] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[6] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[7] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[8] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[9] Md. Jarez MIAH,Vladimir P. KALOSHA,Ricardo ROSALES,Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Front. Optoelectron., 2016, 9(2): 225-237.
[10] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[11] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[12] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[13] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[14] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[15] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed