Nonlinear optical response of graphene in terahertz and near-infrared frequency regime

Yee Sin ANG, Qinjun CHEN, Chao ZHANG

PDF(1981 KB)
PDF(1981 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (1) : 3-26. DOI: 10.1007/s12200-014-0428-0
REVIEW ARTICLE
REVIEW ARTICLE

Nonlinear optical response of graphene in terahertz and near-infrared frequency regime

Author information +
History +

Abstract

In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.

Keywords

graphene / terahertz (THz) response / nonlinear effect / photomixing

Cite this article

Download citation ▾
Yee Sin ANG, Qinjun CHEN, Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime. Front. Optoelectron., 2015, 8(1): 3‒26 https://doi.org/10.1007/s12200-014-0428-0

References

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197-200
CrossRef Pubmed Google scholar
[2]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669
CrossRef Pubmed Google scholar
[3]
Wallace P R. The band theory of graphite. Physical Review, 1947, 71(9): 622-634
CrossRef Google scholar
[4]
Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2006, 2(9): 620-625
CrossRef Google scholar
[5]
Klein O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac. Zeitschrift fur Physik, 1929, 53(3-4): 157-165
CrossRef Google scholar
[6]
Young A F, Kim P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics, 2009, 5(3): 222-226
CrossRef Google scholar
[7]
Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Physical Review Letters, 2009, 102(2): 026807
CrossRef Pubmed Google scholar
[8]
Wright A R, Cao J C, Zhang C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Physical Review Letters, 2009, 103(20): 207401
CrossRef Pubmed Google scholar
[9]
Wang X L, Dou S X, Zhang C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2(1): 31-38
CrossRef Google scholar
[10]
Liu J, Ma Z, Wright A R, Zhang C. Orbital magnetization of graphene and graphene nanoribbons. Journal of Applied Physics, 2008, 103(10): 103711
CrossRef Google scholar
[11]
YuD C, Lupton E M, Gao H J, Zhang C, Liu F. A unified geometric rule for designing nanomagnetism in graphene. Nano Research, 2008, 1(6): 497-501
CrossRef Google scholar
[12]
Cai J Z, Lu L, Kong W J, Zhu H W, Zhang C, Wei B Q, Wu D H, Liu F. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Physical Review Letters, 2006, 97(2): 026402
CrossRef Pubmed Google scholar
[13]
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351-355
CrossRef Google scholar
[14]
Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3(4): 206-209
CrossRef Pubmed Google scholar
[15]
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-191
CrossRef Pubmed Google scholar
[16]
Xia F, Farmer D B, Lin Y M, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010, 10(2): 715-718
CrossRef Pubmed Google scholar
[17]
Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487-496
CrossRef Pubmed Google scholar
[18]
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201-204
CrossRef Pubmed Google scholar
[19]
Gusynin V P, Sharapov S G. Unconventional integer quantum Hall effect in graphene. Physical Review Letters, 2005, 95(14): 146801
CrossRef Pubmed Google scholar
[20]
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
CrossRef Pubmed Google scholar
[21]
Ziegler K. Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 233407
CrossRef Google scholar
[22]
Herbut I F, Juricic V, Vafek O. Coulomb interaction, ripples, and the minimal conductivity of graphene. Physical Review Letters, 2008, 100(4): 046403
CrossRef Google scholar
[23]
Peres N M R, Guinea F, Castro Neto A H. Electronic properties of disordered two-dimensional carbon. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(12): 125411
CrossRef Google scholar
[24]
Cserti J, Csordás A, Dávid G. Role of the trigonal warping on the minimal conductivity of bilayer graphene. Physical Review Letters, 2007, 99(6): 066802
CrossRef Pubmed Google scholar
[25]
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nature Physics, 2008, 4(2): 144-148
CrossRef Google scholar
[26]
Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(15): 153410
CrossRef Google scholar
[27]
Zhang C, Chen L, Ma Z. Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 2008, 77(24): 241402
[28]
Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of dirac quasiparticles in graphene. Physical Review Letters, 2006, 96(25): 256802
CrossRef Pubmed Google scholar
[29]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
CrossRef Pubmed Google scholar
[30]
Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4(7): 532-535
CrossRef Google scholar
[31]
Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401
CrossRef Pubmed Google scholar
[32]
Rycerz A, Tworzydło J, Beenakker C W J. Valley filter and valley valve in graphene. Nature Physics, 2007, 3(3): 172-175
CrossRef Google scholar
[33]
Gunlycke D, White C T. Graphene valley filter using a line defect. Physical Review Letters, 2011, 106(13): 136806
CrossRef Pubmed Google scholar
[34]
Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M. Fully valley-polarized electron beams in graphene. Physical Review Letters, 2008, 100(23): 236801
CrossRef Pubmed Google scholar
[35]
Pereira J M Jr, Peeters F M, Costa Filho R N, Farias G A. Valley polarization due to trigonal warping on tunneling electrons in graphene. Journal of Physics Condensed Matter, 2009, 21(4): 045301
CrossRef Google scholar
[36]
Chaves A, Covaci L, Rakhimov K Y, Farias G A, Peeters F M. Wave-packet dynamics and valley filter in strained graphene. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(20): 205430
CrossRef Google scholar
[37]
Moldovan D, Masir M R, Covaci L, Peeters F M. Resonant valley filtering of massive Dirac electrons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(11): 115431
CrossRef Google scholar
[38]
Zhai F, Chang K. Valley filtering in graphene with a Dirac gap. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155415
CrossRef Google scholar
[39]
Péterfalvi C G, Oroszlány L, Lambert C J, Cserti J. Intraband electron focusing in bilayer graphene. New Journal of Physics, 2012, 14(6): 063028
CrossRef Google scholar
[40]
Majidi L, Zareyan M. Pseudospin polarized quantum transport in monolayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(11): 115422
CrossRef Google scholar
[41]
San-Jose P, Prada E, McCann E, Schomerus H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Physical Review Letters, 2009, 102(24): 247204
CrossRef Pubmed Google scholar
[42]
Trushin M, Schliemann J. Pseudospin in optical and transport properties of graphene. Physical Review Letters, 2011, 107(15): 156801
CrossRef Pubmed Google scholar
[43]
Min H, Borghi G, Polini M, MacDonald A H. Pseudospin magnetism in graphene. Physical Review B, 2008, 77(4): 041407
[44]
Majidi L, Zareyan M. Enhanced Andreev reflection in gapped graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(7): 075443
CrossRef Google scholar
[45]
Brey L, Fertig H A. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(23): 235411
CrossRef Google scholar
[46]
Han M Y, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007, 98(20): 206805
CrossRef Pubmed Google scholar
[47]
Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(4): 045432
CrossRef Google scholar
[48]
Park C H, Yang L, Son Y W, Cohen M L, Louie S G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 2008, 4(3): 213-217
CrossRef Google scholar
[49]
Park C H, Yang L, Son Y W, Cohen M L, Louie S G. New generation of massless Dirac fermions in graphene under external periodic potentials. Physical Review Letters, 2008, 101(12): 126804
CrossRef Pubmed Google scholar
[50]
Park C H, Son Y W, Yang L, Cohen M L, Louie S G. Electron beam supercollimation in graphene superlattices. Nano Letters, 2008, 8(9): 2920-2924
CrossRef Pubmed Google scholar
[51]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K. Strong suppression of weak localization in graphene. Physical Review Letters, 2006, 97(1): 016801
CrossRef Pubmed Google scholar
[52]
Suzuura H, Ando T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Physical Review Letters, 2002, 89(26): 266603
CrossRef Pubmed Google scholar
[53]
Khveschenko D V. Electron localization properties in graphene. Physical Review Letters, 2006, 97: 036802
CrossRef Pubmed Google scholar
[54]
Dragoman D, Dragoman M. Giant thermoelectric effect in graphene. Applied Physics Letters, 2007, 91(20): 203116
CrossRef Google scholar
[55]
Wei P, Bao W, Pu Y, Lau C N, Shi J. Anomalous thermoelectric transport of Dirac particles in graphene. Physical Review Letters, 2009, 102(16): 166808
CrossRef Pubmed Google scholar
[56]
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902-907
CrossRef Pubmed Google scholar
[57]
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
CrossRef Pubmed Google scholar
[58]
Nandkishore R, Levitov L S, Chubukov A V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Physics, 2012, 8(2): 158-163
CrossRef Google scholar
[59]
Sarma S D, Adam S, Hwang E H. Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83(2): 407-439
CrossRef Google scholar
[60]
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611-622
CrossRef Google scholar
[61]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81: 109-162
CrossRef Google scholar
[62]
Beenakker C W J. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 2008, 80(4): 1337-1354
CrossRef Google scholar
[63]
Hasan M Z, Kane C L. Colloquium: topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045-3067
CrossRef Google scholar
[64]
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters, 2012, 108(24): 245501
CrossRef Pubmed Google scholar
[65]
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters, 2012, 108(15): 155501
CrossRef Pubmed Google scholar
[66]
Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano, 2013, 7(5): 4414-4421
[67]
Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C. Large-gap quantum spin Hall insulators in tin films. Physical Review Letters, 2013, 111(13): 136804
CrossRef Pubmed Google scholar
[68]
Shareef S, Ang Y S, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(3): 274-279
CrossRef Google scholar
[69]
Ang Y S, Sultan S, Zhang C. Nonlinear optical spectrum of bilayer graphene in the terahertz regime. Applied Physics Letters, 2010, 97(24): 243110
CrossRef Google scholar
[70]
Ang Y S, Zhang C. Subgap optical conductivity in semihydrogenated graphene. Applied Physics Letters, 2011, 98(4): 042107
CrossRef Google scholar
[71]
Ang Y S, Zhang C. Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion. Journal of Physics. D, Applied Physics, 2012, 45(39): 395303
CrossRef Google scholar
[72]
Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928
CrossRef Google scholar
[73]
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
CrossRef Pubmed Google scholar
[74]
Mikhailov S A. Non-linear electromagnetic response of graphene. Europhysics Letters, 2007, 79(2): 27002
CrossRef Google scholar
[75]
Mikhailov S A, Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. Journal of Physics Condensed Matter, 2008, 20(38): 384204
CrossRef Google scholar
[76]
Dragoman M, Neculoiu D, Deligeorgis G, Konstantinidis G, Dragoman D, Cismaru A, Muller A A, Plana R. Millimeter-wave generation via frequency multiplication in graphene. Applied Physics Letters, 2010, 97(9): 093101
CrossRef Google scholar
[77]
Wright A R, Xu X G, Cao J C, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
CrossRef Google scholar
[78]
Lim G K, Chen Z L, Clark J, Goh R G S, Ng W H, Tan H W, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 2011, 5(9): 554-560
CrossRef Google scholar
[79]
Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430-2435
CrossRef Google scholar
[80]
Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M Jr. Optical third-harmonic generation in graphene. Physical Review X, 2013, 3(2): 021014
[81]
Wu S, Mao L, Jones A M, Yao W, Zhang C, Xu X. Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Letters, 2012, 12(4): 2032-2036
CrossRef Pubmed Google scholar
[82]
Ishikawa K L.Nonlinear optical response of graphene in time domain. Physical Review B, 2010, 82(20): 201402
[83]
Feynman R P. Forces in molecules. Physical Review, 1939, 56(4): 340-343
CrossRef Google scholar
[84]
Zhang C. Frequency-dependent electrical transport under intense terahertz radiation. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(8): 081105
CrossRef Google scholar
[85]
Ludwig A W W, Fisher M P A, Shankar R, Grinstein G. Integer quantum Hall transition: an alternative approach and exact results. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(11): 7526-7552
CrossRef Google scholar
[86]
Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F. Controlling inelastic light scattering quantum pathways in graphene. Nature, 2011, 471(7340): 617-620
CrossRef Pubmed Google scholar
[87]
Gao F, Wang G, Zhang C. Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spin-orbit coupling. Nanotechnology, 2008, 19(46): 465401
CrossRef Pubmed Google scholar
[88]
Wolff P A, Pearson G A. Theory of optical mixing by mobile carriers in semiconductors. Physical Review Letters, 1966, 17(19): 1015-1017
CrossRef Google scholar
[89]
Dong H M, Xu W, Tan R B. Temperature relaxation and energy loss of hot carriers in graphene. Solid State Communications, 2010, 150(37-38): 1770-1773
CrossRef Google scholar
[90]
Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W, First P, Norris T. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402
CrossRef Pubmed Google scholar
[91]
Butscher S, Milde F, Hirtschulz M, Malic E, Knorr A. Hot electron relaxation and phonon dynamics in graphene. Applied Physics Letters, 2007, 91(20): 203103
CrossRef Google scholar
[92]
Bao W S, Liu S Y, Lei X L. Hot-electron transport in graphene driven by intense terahertz fields. Physics Letters. [Part A], 2010, 374(10): 1266-1269
CrossRef Google scholar
[93]
McCann E, Fal’ko V I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Physical Review Letters, 2006, 96(8): 086805
CrossRef Pubmed Google scholar
[94]
Koshino M, Ando T. Transport in bilayer graphene: calculations within a self-consistent Born approximation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(24): 245403
CrossRef Google scholar
[95]
McCann C, Abergel D S L, Fal’ko V I. Electrons in bilayer graphene. Solid State Communications, 2007, 143(-2): 110-115
CrossRef Google scholar
[96]
Chen L, Ma Z, Zhang C. Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene. Applied Physics Letters, 2010, 96(2): 023107
CrossRef Google scholar
[97]
Edwards W F. Special relativity in anisotropic space. American Journal of Physics, 1963, 31(7): 482-489
[98]
Moon C Y, Han J, Lee H, Choi H J. Low-velocity anisotropic Dirac fermions on the side surface of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(19): 195425
CrossRef Google scholar
[99]
Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H, Kim J S. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Physical Review Letters, 2011, 107(12): 126402
CrossRef Pubmed Google scholar
[100]
Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430-2435
CrossRef Google scholar
[101]
Lim G K, Chen Z L, Clark J, Goh R G S, Ng W H, Tan H W, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature photonics, 2011, 5(9): 554-560
[102]
Hwang E H, Das Sarma S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(11): 115449
CrossRef Google scholar
[103]
Song J C, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602
CrossRef Pubmed Google scholar
[104]
Betz A C, Jhang S H, Pallecchi E, Ferreira R, Feve G, Berroir J M, Placais B. Supercollision cooling in undoped graphene. Nature Physics, 2012, 9(2): 109-112
CrossRef Google scholar
[105]
Graham M W, Shi S F, Ralph D C, Park J, McEuen P L. Photocurrent measurements of supercollision cooling in graphene. Nature Physics, 2012, 9(2): 103-108
CrossRef Google scholar
[106]
Xu X G, Cao J C. Nonlinear response induced strong absorptance of graphene in the terahertz regime. Modern Physics Letters B, 2010, 24(21): 2243-2249
CrossRef Google scholar
[107]
Weiss D, Zhang C, Gerhardts R R, Klitzing K, Weimann G. Density of states in a two-dimensional electron gas in the presence of a one-dimensional superlattice potential. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(17): 13020-13023
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1981 KB)

Accesses

Citations

Detail

Sections
Recommended

/