Influence of optical filtering on transmission capacity in single mode fiber communications

M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO

Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 424-430.

PDF(714 KB)
Front. Optoelectron. All Journals
PDF(714 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (4) : 424-430. DOI: 10.1007/s12200-014-0426-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of optical filtering on transmission capacity in single mode fiber communications

Author information +
History +

Abstract

This paper presents the design and analysis of optical filters that are placed at the output of directly modulated vertical cavity surface emitting laser (VCSEL) in the process of inexpensive transmitter’s implementation for upcoming generation optical access network. Generation of non return to zero (NRZ) optical signal from the transmitter for 110 km error-free single mode fiber (SMF) transmission at 10 Gb/s with bit error rate (BER) of 10−30 in the absence of the external modulator and encoder was proposed. Effects of super-Gaussian and Butterworth optical filters at VCSEL output were demonstrated to maximize performance of SMF optical systems without need of any dispersion compensation technique.

Keywords

single mode fiber (SMF) / optical filter / dispersion / data rate

Cite this article

Download citation ▾
M. Venkata SUDHAKAR, Y. Mallikarjuna REDDY, B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications. Front. Optoelectron., 2015, 8(4): 424‒430 https://doi.org/10.1007/s12200-014-0426-2
With the gradual reduction of fossil fuel and the growing environmental concerns over the climate change associated with the use of fossil fuel, renewable energy sources such as solar, wind, biomass, geothermal and hydroelectric are becoming increasingly important. In particular, solar power generation has emerged as the most rapidly growing renewable source. As a result, solar cells of different types have been intensively studied. In this special issue, 2 review articles and 2 research articles focusing on solar cells are presented. Dye-sensitized solar cells (DSSCs) are regarded as one of the most promising types due to their low-cost, transparency and relatively high conversion efficiency. Dr. Hongwei Han et al. reviewed the recent progress of materials and achievements for all-solid-state DSSCs and highlighted some representative examples. Also, in a research article, they reported a monobasal solid-state DSSCs with mesoporous TiO2 beads, and as high as 4% efficiency is achieved under air mass (AM) 1.5 illumination. Dr. Mingkui Wang et al. introduced the design and understanding of sensitizers, which are extremely important in determining the performance of DSSCs. The advances in the conception and performance of various sensitizers including ruthenium complexes, organic dyes and porphyrins are discussed. Dr. Guoli Tu et al. synthesized five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and power conversion efficiency (PCE) value that was due to its better intermolecular stacking.
In addition to seeking the renewable energy sources, people also have been engaging in a variety of energy-saving technologies to reduce the consumption of fossil fuel, among which the technology of light-emitting diodes (LEDs) plays an important role. In this special issue, we selected 2 research articles focusing on LEDs. Dr. Xiong Hui et al. theoretically studied the effects of gradually increased barrier heights from n- to p-layers in the active region on blue InGaN based LEDs. And Dr. Lei Wang et al. demonstrated a highly efficient phosphorescent organic lighting emitting diodes (PhOLEDs) with low efficiency roll-off by using a unilateral homogenous device structure with wide band-gap material 4,4',4″-tri(N-carbazolyl)-triphenylamine (TCTA) as hole transporting layer and emitting layer (EML).
This special issue also features 1 review article and 3 research articles focusing on nano-materials. Dr. Xiuquan Gu et al. summarized the growth mechanisms and the recent progresses of ZnO nanostructures for the application of electron field emitters. Dr. Yu Tian reported a simple and effective method to fabricate highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. Dr. Qing Yang investigated the lasing characteristics of curved semiconductor nanowires and found the abnormal phenomenon of dominant peak switching when increasing the pump power. Dr. Chaojian Wu synthesized hydrophilic photoluminescent CdTe/poly (1, 4-butanediol-citrate) (PBC) bioelastomer nanocomposites by a two-step method and found these nanocomposites possess good hydrophilicity and high fluorescence properties.
Additionally, Dr. Mingqiang Zhu reported the synthesis of hexaarylbiimidazole-tetraphenylethene (HABI-TPE) conjugated photochromic fluorophore, which simultaneously exhibited photochromic property, condensed state enhanced emission and reversible fluorescence switching. And Dr. Yiwei Xie proposed and demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG).
We would like to thank to all of the authors for their excellent contributions and the editors of Frontiers for Optoelectronics for inviting us to act as guest editors for this special issue.

References

[1]
Schires K, Hurtado A, Henning I D, Adams M J. Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection. IEEE Photonics Journal, 2011, 3(3): 555–563
CrossRef Google scholar
[2]
Lin C C, Chi Y C, Kuo H C, Peng P C, Chang-Hasnain C J, Lin G R. Beyond-bandwidth electrical pulse modulation of a TO-Can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission. Journal of Lightwave Technology, 2011, 29(6): 830–841
CrossRef Google scholar
[3]
Papakonstantinou I, Papadopoulos S, Soos C, Troska J, Vasey F, Vichoudis P. Modal dispersion mitigation in standard single-mode fibers at 850 nm with fiber mode filters. IEEE Photonics Technology Letters, 2010, 22(20): 1476–1478
CrossRef Google scholar
[4]
Koizumi K, Yoshida M, Nakazawa M. A 10-GHz optoelectronic oscillator at 1.1 µm using a single-mode VCSEL and a photonic crystal fiber. IEEE Photonics Technology Letters, 2010, 22(5): 293–295
CrossRef Google scholar
[5]
Gatto A, Boletti A, Boffi P, Neumeyr C, Ortsiefer M, Rönneberg E, Martinelli M. 1.3-µm VCSEL transmission performance up to 12.5 Gbs for metro access networks. IEEE Photonics Technology Letters, 2009, 21(12): 778–780
CrossRef Google scholar
[6]
Rao Y, Yang W, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long-wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311
[7]
Killey R I, Watts P M, Mikhailov V, Glick M, Bayvel P. Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator. IEEE Photonics Technology Letters, 2005, 17(3): 714–716
CrossRef Google scholar
[8]
Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Ishikawa M, Tsuzuki K, Shibata Y, Kondo Y, Kano F. Wide temperature range (25°C–100°C) operation of a 10-Gb/s 1.55-µm electroabsorption modulator integrated DFB laser for 80-km SMF transmission. IEEE Photonics Technology Letters, 2009, 21(15): 1054–1056
CrossRef Google scholar
[9]
Yi H, Long Q, Tan W, Li L, Wang X, Zhou Z. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission. Optics Express, 2012, 20(25): 27562–27568
CrossRef Pubmed Google scholar
[10]
Kipnoo E R, Kourouma H, Waswa D, Leitch A W R, Gibbon T B. Analysis of VCSEL transmission for the square kilometre array (SKA) in South Africa. In: Proceedings of the Southern Africa Telecommunication Networks and Applications Conference (SATNAC), George, South Africa. 2012, 483–484
[11]
Cheng X, Wen Y J, Xu Z, Shao X, Wang Y, Yeo Y. 10-Gb/s WDM-PON transmission using uncooled, directly modulated free-running 1.55-μm VCSELs. In: proceedings of European Conference on Optical Communication, Brussels, Belgium. 2008, Paper P.6.02
[12]
Hofmann W, Grüner-Nielsen L, Rönneberg E, Böhm G, Ortsiefer M, Amann M C. 1.55-µm VCSEL modulation performance with dispersion-compensating fibers. IEEE Photonics Technology Letters, 2009, 21(15): 1072–1074
CrossRef Google scholar
[13]
Nishiyama N, Caneau C, Downie J D, Sauer M, Zah C E. 10-Gbps 1.3 and 1.55-μm InP-based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55-μm with EDC. In: Proceedings of Optical Fiber Communication Conference. 2006, PDP23
[14]
Rotich Kipnoo E K, Kourouma H Y S, Gamatham R R G, Leitch A W R, Gibbon T B. Chromatic dispersion compensation for VCSEL transmission for applications such as square kilometre array South Africa. In: Proceedings of the 58th annual SAIP conference, Pretoria, South Africa. 2013, paper 171
[15]
Boffi B, Boletti A, Gatto A, Martinelli M. VCSEL to VCSEL injection locking for uncompensated 40-km transmission at 10 Gb/s. In: Proceedings of National Fiber Optic Engineers Conference, San Diego, USA. 2009, JThA32
[16]
Fidler F, Cerimovic S, Dorrer C. High-speed optical characterization of intensity and phase dynamics of a 1.55 µm VCSEL for short-reach applications. In: Proceedings of Optical Fiber Communication Conference. 2006, OW175
[17]
Jensen J B, Rodes R, Caballero A, Cheng N, Zibar D, Monroy I T. VCSEL based coherent PONs. Journal of Lightwave Technology, 2014, 32(8): 1423–1433
[18]
Lin C C, Kuo H C, Peng P C, Lin G R. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter. Optics Express, 2008, 16(7): 4838–4847
[19]
Mena P V, Morikuni J J, Kang S M, Harton A V, Wyatt K W. A simple rate-equation-based thermal VCSEL model. Journal of Lightwave Technology, 1999, 17(5): 865–872
CrossRef Google scholar
[20]
Cartledge J C, Burley G S. The effect of laser chirping on lightwave system performance. Journal of Lightwave Technology, 1989, 7(3): 568–573
CrossRef Google scholar
[21]
Pfennigbauer M, Winzer P J. Choice of MUX/DEMUX filter characteristics for NRZ, RZ, and CSRZ DWDM systems. Journal of Lightwave Technology, 2006, 24(4): 1689–1696
CrossRef Google scholar
[22]
Slobodnik A J, Fenstermacher T E, Kearns W J, Roberts G A, Silva J H, Noonan J P. SAW Butterworth contiguous filters at UHF. IEEE Transactions on Sonics and Ultrasonics, 1979, SU-26(3): 246–253
[23]
Slobodnik A J, Kearns W J, Noonan J P. Design, fabrication and testing of SAW Butterworth filters. In: IEEE MITTs International Microwave Symposium. 1975, 353–355
[24]
Dai B, Gao Z, Wang X, Chen H, Kataoka N, Wada N. Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion. Journal of Lightwave Technology, 2013, 31(1): 145–151
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(714 KB)

Accesses

Citations

Detail

Sections
Recommended

/