Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter

Pradip DALAPATI, Nabin Baran MANIK, Asok Nath BASU

PDF(609 KB)
PDF(609 KB)
Front. Optoelectron. ›› DOI: 10.1007/s12200-014-0379-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter

Author information +
History +

Abstract

In the present work, we measured the forward bias current-voltage (I-V) characteristics of Si-doped n type gallium arsenide (GaAs) heterostructures infrared emitter over a wide temperature range from 350 to 77 K. Results showed that the slopes of the exponential curve changed slowly with temperature. The analysis of the various tunneling mechanisms indicated that the tunneling current varied approximately as a function of ~ exp(- aEg + beV) where the parameters a and b varied indistinctively with temperature and voltage. The dependence of forward tunneling current on the temperature and bias can be explained by thermally induced band gap shrinkage and bias induced route change respectively. These results will be helpful for application of the optoelectronics device in both high and low temperature ambiences.

Keywords

infrared emitter / tunneling / characteristic energy / band gap / thermal stress

Cite this article

Download citation ▾
Pradip DALAPATI, Nabin Baran MANIK, Asok Nath BASU. Tunneling current in Si-doped n type-GaAs heterostructures infrared emitter. Front. Optoelectron., https://doi.org/10.1007/s12200-014-0379-5

References

[1]
The application of infrared LED. 2008, http://www.ledinside.com/knowledge/2008/8/the_application_of_infrared_LED
[2]
Camin D V, Valerio G. Cryogenic behavior of optoelectronic devices for the transmission of analog signals via fiber optics. IEEE Transactions on Nuclear Science, 2006, 53(6): 3929–3933
CrossRef Google scholar
[3]
Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40(4): 341–344
CrossRef Google scholar
[4]
Losacco G, Dominique G. Components update: qualification of a IR LED device for optical encoders for space applications. ISROS, 1–5 October 2012– Poster Session
[5]
Hudait M K, Modak P, Krupanidhi S B. Si incorporation and Burstein–Moss shift in n-type GaAs. Materials Science and Engineering B, 1999, 60(1): 1–11
CrossRef Google scholar
[6]
Wilson J, Hawker J F B. Optoelectronics-An Introduction. 2nd ed. India: Prentice-Hall of India Private Limited, 1999, 132–133
[7]
Hudait M K, Modak P, Rao K S R K, Krupanidh S B. Low temperature photoluminescence properties of Zn-doped GaAs. Materials Science and Engineering B, 1998, 57(1): 62–70
CrossRef Google scholar
[8]
Yan D W, Lu H, Chen D J, Zhang R, Zheng Y D. Forward tunneling current in GaN-based blue light-emitting diodes. Applied Physics Letters, 2010, 96(8): 083504-1–083504-3
[9]
Casey H C, Muth J, Krishnankutty S, Zavada J M. Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Applied Physics Letters, 1996, 68(20): 2867–2869
CrossRef Google scholar
[10]
Eliseev P G, Perlin P, Furioli J, Sartori P, Mu J, Osinski M. Tummeling current and electroluminescence in InGaN:Zn, Si/AlGaN/GaN blue light emitting diodes. Journal of Electronic Materials, 1997, 26(3): 311–319
CrossRef Google scholar
[11]
Zemel A, Eger D.Tunneling current in PbTe-Pb0.8Sn0.2Te heterojunctions. Solid-Slate Electronics, 1980, 23(11): 1123–1126
[12]
Sarusi G, Zemel A, Sher A, Eger D. Forward tunneling current in HgCdTe photodiodes. Journal of Applied Physics, 1994, 76(7): 4420–4425
CrossRef Google scholar
[13]
Dalapati P, Manik N B, Basu A N. Effect of temperature on intensity and carrier lifetime of an AlGaAs based red light emitting diode. Journal of Semiconductors, 2013, 34(9): 092001-1–092001-5
[14]
Reynolds C L, Patel A. Tunneling entity in different injection regimes of InGaN light emitting diodes. Journal of Applied Physics, 2008, 103(8): 086102-1–086102-2
CrossRef Google scholar
[15]
Morgan T N. Recombination by tunneling in electroluminescent diodes. Physical Review, 1966, 148(2): 890–903
CrossRef Google scholar
[16]
Wolfe C M, Stillman G E, Dimmock J O. Ionized impurity density in n-type GaAs. Journal of Applied Physics, 1970, 41(2): 504–507
CrossRef Google scholar
[17]
Guo W L, Jia X J, Yin F, Cui B F, Gao W, Liu Y, Yan W W. Characteristics of high power LEDs at high and low temperature. Journal of Semiconductors, 2011, 32(4): 044007-1–044007-3
[18]
Schubert E F. Light Emitting Diodes. San Diego: Cambridge University Press, 2003, 80
[19]
Ozgur G. The effective mass theory. 2003, http://lyle.smu.edu/ee/smuphotonics/Gain/CoursePresentationFall03/Effective_Mass_Theory_July25-03.pdf
[20]
Kittel C. Introduction to Solid State Physics. 7th ed. Singapore: John Wiley & Sons (Asia) Pre. Ltd., 2004, 214

Acknowledgements

The authors acknowledge the Defence Research Development Organization (DRDO), India, for financial assistance, and one of the authors, Pradip Dalapati is thankful to DRDO for the award of a research fellowship.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(609 KB)

Accesses

Citations

Detail

Sections
Recommended

/