Anti-reflection implementations for terahertz waves

Yuting W. CHEN, Xi-Cheng ZHANG

PDF(1114 KB)
PDF(1114 KB)
Front. Optoelectron. ›› 2014, Vol. 7 ›› Issue (2) : 243-262. DOI: 10.1007/s12200-013-0377-z
REVIEW ARTICLE
REVIEW ARTICLE

Anti-reflection implementations for terahertz waves

Author information +
History +

Abstract

Undesired reflection caused by impedance mismatch can lead to significant power loss and other unwanted effects. In the terahertz regime, anti-reflection method has evolved from simple quarter-wave anti-reflection coating to sophisticated metamaterial device and photonic structures. In this paper, we examined and compared the theories and techniques of several anti-reflection implementations for terahertz waves, with emphasis on gradient index photonic structures. A comprehensive study is presented on the design, fabrication and evaluation of this new approach.

Keywords

terahertz / anti-reflection / gradient index / photonic structure

Cite this article

Download citation ▾
Yuting W. CHEN, Xi-Cheng ZHANG. Anti-reflection implementations for terahertz waves. Front. Optoelectron., 2014, 7(2): 243‒262 https://doi.org/10.1007/s12200-013-0377-z

References

[1]
Englert C R, Birk M, Maurer H. Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 1997–2003
CrossRef Google scholar
[2]
Gatesman A J, Waldman J, Ji M, Musante C, Yangvesson S. An anti-reflection coating for silicon optics at terahertz frequencies. IEEE Microwave and Guided Wave Letters, 2000, 10(7): 264–266
CrossRef Google scholar
[3]
McKnight S W, Stewart K P, Drew H D, Moorjani K. Wavelength-independent anti-interference coating for the far-infrared. Infrared Physics, 1987, 27(5): 327–333
CrossRef Google scholar
[4]
Kröll J, Darmo J, Unterrainer K. Metallic wave-impedance matching layers for broadband terahertz optical systems. Optics Express, 2007, 15(11): 6552–6560
CrossRef Pubmed Google scholar
[5]
Thoman A, Kern A, Helm H, Walther M. Nanostructured gold films broadband terahertz antireflection coating. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195405
CrossRef Google scholar
[6]
Poitras D, Dobrowolski J A. Toward perfect antireflection coatings. 2. Theory. Applied Optics, 2004, 43(6): 1286–1295
CrossRef Pubmed Google scholar
[7]
Hosako I. Multilayer optical thin films for use at terahertz frequencies: method of fabrication. Applied Optics, 2005, 44(18): 3769–3773
CrossRef Pubmed Google scholar
[8]
Chen H T, Zhou J, O’Hara J F, Chen F, Azad A K, Taylor A J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901
CrossRef Pubmed Google scholar
[9]
Brückner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tünnermann A. Broadband antireflective surface-relief structure for THz optics. Optics Express, 2007, 15(3): 779–789
CrossRef Pubmed Google scholar
[10]
Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K.Triangular surface-relief grating for reduction of reflection from silicon surface in the 0.1-3 terahertz region. In: Proceedings of CLEO/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. 2008, CThD7
[11]
Chen Y W, Han P Y, Zhang X C. Tunable broadband antireflection structures for silicon at terahertz frequency. Applied Physics Letters, 2009, 94(4): 041106
CrossRef Google scholar
[12]
Dobrowolski J A, Poitras D, Ma P, Vakil H, Acree M. Toward perfect antireflection coatings: numerical investigation. Applied Optics, 2002, 41(16): 3075–3083
CrossRef Pubmed Google scholar
[13]
Chen M, Chang H C, Chang A S P, Lin S Y, Xi J Q, Schubert E F. Design of optical path for wide-angle gradient-index antireflection coatings. Applied Optics, 2007, 46(26): 6533–6538
CrossRef Pubmed Google scholar
[14]
Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P. Materials with on-demand refractive indices in the terahertz range. Optics Letters, 2008, 33(19): 2275–2277
CrossRef Pubmed Google scholar
[15]
Saleh B E A, Teich M C. Fundamentals of Photonics, New Jersey: Wiley, 2007, 246–251
[16]
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef Pubmed Google scholar
[17]
Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883
CrossRef Pubmed Google scholar
[18]
Dai J, Zhang J, Zhang W, Grischkowsky D. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index refraction of high-resistivity, float-zone silicon. Journal of the Optical Society of America. B, Optical Physics, 2004, 21(7): 1379–1386
CrossRef Google scholar
[19]
Loewenstein E V, Smith D R, Morgan R L. Optical constants of far infrared materials. 2: crystalline solids. Applied Optics, 1973, 12(2): 398–406
CrossRef Pubmed Google scholar
[20]
Brückner T, Käsebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tünnermann A. Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Optics Express, 2009, 17(5): 3063–3077
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1114 KB)

Accesses

Citations

Detail

Sections
Recommended

/