Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling

Wei Gong, Mengwen Yan, Junxiong Chen, Sandip Chaugai, Chen Chen, Daowen Wang

PDF(949 KB)
PDF(949 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (4) : 445-455. DOI: 10.1007/s11684-014-0378-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling

Author information +
History +

Abstract

Recent evidences suggested that cyclic guanosine monophosphate-specific phosphodiesterase 5 (PDE5) inhibitor represents an important therapeutic target for cardiovascular diseases. Whether and how it ameliorates cardiac fibrosis, a major cause of diastolic dysfunction and heart failure, is unknown. The purpose of this study was to investigate the effects of PDE5 inhibitor on cardiac fibrosis. We assessed cardiac fibrosis and pathology in mice subjected to transverse aortic constriction (TAC). Oral sildenafil, a PDE5 inhibitor, was administered in the therapy group. In control mice, 4 weeks of TAC induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation to myofibroblasts). Sildenafil treatment markedly prevented TAC-induced cardiac dysfunction, cardiac fibrosis and cardiac fibroblast activation but did not block TAC-induced transforming growth factor-β1 (TGF-β1) production and phosphorylation of Smad2/3. In isolated cardiac fibroblasts, sildenafil blocked TGF-β1-induced cardiac fibroblast transformation, proliferation and collagen synthesis. Furthermore, we found that sildenafil induced phosphorylated cAMP response element binding protein (CREB) and reduced CREB-binding protein 1 (CBP1) recruitment to Smad transcriptional complexes. PDE5 inhibition prevents cardiac fibrosis by reducing CBP1 recruitment to Smad transcriptional complexes through CREB activation in cardiac fibroblasts.

Keywords

PDE5 / cardiac fibrosis / TGF-β / CREB

Cite this article

Download citation ▾
Wei Gong, Mengwen Yan, Junxiong Chen, Sandip Chaugai, Chen Chen, Daowen Wang. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling. Front. Med., 2014, 8(4): 445‒455 https://doi.org/10.1007/s11684-014-0378-3

References

[1]
Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature<?Pub Caret?>2008; 451(7181): 919–928
CrossRef Pubmed Google scholar
[2]
Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest2007; 117(3): 568–575
CrossRef Pubmed Google scholar
[3]
Chen J, Shearer GC, Chen Q, Healy CL, Beyer AJ, Nareddy VB, Gerdes AM, Harris WS, O’Connell TD, Wang D. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation2011; 123(6): 584–593
CrossRef Pubmed Google scholar
[4]
Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res2007; 74(2): 207–212
CrossRef Pubmed Google scholar
[5]
Kai H, Kuwahara F, Tokuda K, Imaizumi T. Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005; 28(6): 483–490
CrossRef Pubmed Google scholar
[6]
Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation2002; 106(1): 130–135
CrossRef Pubmed Google scholar
[7]
Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res2008; 102(2): 185–192
CrossRef Pubmed Google scholar
[8]
Shi X, Yang X, Chen D, Chang Z, Cao X. Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J Biol Chem1999; 274(19): 13711–13717
CrossRef Pubmed Google scholar
[9]
Kass DA, Champion HC, Beavo JA. Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res2007; 101(11): 1084–1095
CrossRef Pubmed Google scholar
[10]
Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res2007; 100(3): 309–327
CrossRef Pubmed Google scholar
[11]
Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med2005; 11(2): 214–222
CrossRef Pubmed Google scholar
[12]
Hassan MA, Ketat AF. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol2005; 5(1): 10
CrossRef Pubmed Google scholar
[13]
Pérez NG, Piaggio MR, Ennis IL, Garciarena CD, Morales C, Escudero EM, Cingolani OH, Chiappe de Cingolani G, Yang XP, Cingolani HE. Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension2007; 49(5): 1095–1103
CrossRef Pubmed Google scholar
[14]
Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation2007; 116(3): 238–248
CrossRef Pubmed Google scholar
[15]
Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I, Busch C, Marsboom G, Gheysens O, Vermeersch P, Biesmans L, Liu X, Gillijns H, Pellens M, Van Lommel A, Buys E, Schoonjans L, Vanhaecke J, Verbeken E, Sipido K, Herijgers P, Bloch KD, Janssens SP. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation2009; 119(3): 408–416
CrossRef Pubmed Google scholar
[16]
deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp2010; (38): e1729
Pubmed
[17]
Ni L, Zhou C, Duan Q, Lv J, Fu X, Xia Y, Wang DW. β-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS ONE2011; 6(11): e27294
CrossRef Pubmed Google scholar
[18]
Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation1993; 88(6): 2849–2861
CrossRef Pubmed Google scholar
[19]
Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther2003; 307(2): 753–764
CrossRef Pubmed Google scholar
[20]
Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol2005; 45(4): 608–616
CrossRef Pubmed Google scholar
[21]
Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation1979; 59(3): 421–430
CrossRef Pubmed Google scholar
[22]
Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci2003; 116(2): 217–224
CrossRef Pubmed Google scholar
[23]
Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res2007; 74(2): 196–206
CrossRef Pubmed Google scholar
[24]
Isono M, Chen S, Hong SW, Iglesias-de la Cruz MC, Ziyadeh FN. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun2002; 296(5): 1356–1365
CrossRef Pubmed Google scholar
[25]
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J1998; 17(11): 3091–3100
CrossRef Pubmed Google scholar
[26]
Chen SJ, Yuan W, Lo S, Trojanowska M, Varga J. Interaction of smad3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. J Cell Physiol2000; 183(3): 381–392
CrossRef Pubmed Google scholar
[27]
Yang YC, Piek E, Zavadil J, Liang D, Xie D, Heyer J, Pavlidis P, Kucherlapati R, Roberts AB, Böttinger EP. Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci USA2003; 100(18): 10269–10274
CrossRef Pubmed Google scholar
[28]
Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev2005; 19(23): 2783–2810
CrossRef Pubmed Google scholar
[29]
Buxton IL, Duan D. Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ Res2008; 102(2): 151–153
CrossRef Pubmed Google scholar
[30]
Lu Z, Xu X, Hu X, Lee S, Traverse JH, Zhu G, Fassett J, Tao Y, Zhang P, dos Remedios C, Pritzker M, Hall JL, Garry DJ, Chen Y. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation2010; 121(13): 1474–1483
CrossRef Pubmed Google scholar
[31]
Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, Takimoto E, Kass DA. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol2009; 53(2): 207–215
CrossRef Pubmed Google scholar
[32]
Hsu S, Nagayama T, Koitabashi N, Zhang M, Zhou L, Bedja D, Gabrielson KL, Molkentin JD, Kass DA, Takimoto E. Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovasc Res2009; 81(2): 301–309
CrossRef Pubmed Google scholar
[33]
Schiller M, Verrecchia F, Mauviel A. Cyclic adenosine 3′,5′-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Oncogene2003; 22(55): 8881–8890
CrossRef Pubmed Google scholar
[34]
Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell1989; 59(4): 675–680
CrossRef Pubmed Google scholar
[35]
Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W 3rd, Vale WW, Montminy MR. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature1989; 337(6209): 749–752
CrossRef Pubmed Google scholar
[36]
Liu X, Sun SQ, Hassid A, Ostrom RS. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol2006; 70(6): 1992–2003
CrossRef Pubmed Google scholar
[37]
Zhang X, Yan G, Ji J, Wu J, Sun X, Shen J, Jiang H, Wang H. PDE5 inhibitor promotes melanin synthesis through the PKG pathway in B16 melanoma cells. J Cell Biochem2012; 113(8): 2738–2743
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by Key Project of National Natural Science Foundation of China (No. 31130031). We acknowledge Drs. Han Chen and Jing Zhao for great help with echocardiography.
Wei Gong, Mengwen Yan, Junxiong Chen, Sandip Chaugai, Chen Chen, and Daowen Wang declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.
Electronic Supplementary MaterialƒSupplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11684-014-0378-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(949 KB)

Accesses

Citations

Detail

Sections
Recommended

/